Dual binary discriminator varieties

Authors

DOI:

https://doi.org/10.26493/2590-9770.1324.5b2

Keywords:

Dual binary discriminator, binary discriminator, ternary discriminator, skew lattice

Abstract

Left normal bands, strongly distributive skew lattices, implicative BCS-algebras, skew Boolean algebras, skew Boolean intersection algebras, and certain other non-commutative structures occur naturally as term reducts in the study of ternary discriminator algebras and the varieties that they generate, giving rise thereby to various classes of pointed discriminator varieties that generalise the class of pointed ternary discriminator varieties. For each such class of varieties there is a corresponding pointed discriminator function that generalises the ternary discriminator. In this paper some of the classes of pointed discriminator varieties that are contained in the class of dual binary discriminator varieties are characterised. A key unifying property is that the principal ideals of an algebra in a dual binary discriminator variety are entirely determined by the dual binary discriminator term for that variety.

Published

2019-12-30

Issue

Section

Non-Commutative Structures 2018