Nothing Special   »   [go: up one dir, main page]

Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter January 1, 2010

Diffeomorphic Matching and Dynamic Deformable Surfaces in 3d Medical Imaging

  • R. Azencott EMAIL logo , R. Glowinski , J. He , A. Jajoo , Y. Li , A. Martynenko , R.H.W. Hoppe , S. Benzekry and S.H. Little

Abstract

We consider optimal matching of submanifolds such as curves and surfaces by a variational approach based on Hilbert spaces of diffeomorphic transformations. In an abstract setting, the optimal matching is formulated as a minimization problem involving actions of diffeomorphisms on regular Borel measures considered as supporting measures of the reference and the target submanifolds. The objective functional consists of two parts measuring the elastic energy of the dynamically deformed surfaces and the quality of the matching. To make the problem computationally accessible, we use reproducing kernel Hilbert spaces with radial kernels and weighted sums of Dirac measures which gives rise to diffeomorphic point matching and amounts to the solution of a finite dimensional minimization problem. We present a matching algorithm based on the first order necessary optimality conditions which include an initial-value problem for a dynamical system in the trajectories describing the deformation of the surfaces and a final-time problem associated with the adjoint equations. The performance of the algorithm is illustrated by numerical results for examples from medical image analysis.

Received: 2010-06-19
Revised: 2010-07-07
Accepted: 2010-08-16
Published Online: 2010
Published in Print: 2010

© Institute of Mathematics, NAS of Belarus

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Downloaded on 21.11.2024 from https://www.degruyter.com/document/doi/10.2478/cmam-2010-0014/html
Scroll to top button