Nothing Special   »   [go: up one dir, main page]

计算机科学 ›› 2020, Vol. 47 ›› Issue (1): 321-328.doi: 10.11896/jsjkx.190100027

• 信息安全 • 上一篇    

基于FPGA的7-Zip加密文档高能效口令恢复方法

陈晓杰1,周清雷1,李斌1,2   

  1. (郑州大学信息工程学院 郑州450001)1;
    (解放军信息工程大学数学工程与先进计算国家重点实验室 郑州450001)2
  • 收稿日期:2019-01-05 发布日期:2020-01-19
  • 通讯作者: 周清雷(ieqlzhou@zzu.edu.cn)
  • 基金资助:
    国家重点研发计划项目(2016YFB0800100);国家自然科学基金面上项目(61572444)

Energy-efficient Password Recovery Method for 7-Zip Document Based on FPGA

CHEN Xiao-jie1,ZHOU Qing-lei1,LI Bin1,2   

  1. (School of Information Engineering,Zhengzhou University,Zhengzhou 450001,China)1;
    (State Key Laboratory of Mathematical Engineering and Advanced Computing,Information Engineering University,Zhengzhou 450001,China)2
  • Received:2019-01-05 Published:2020-01-19
  • About author:CHEN Xiao-jie,born in 1993,postgra-duate,is not member of China ComputerFederation (CCF).His main research interests include information security;ZHOU Qing-lei,born in 1962,Ph.D,professor,Ph.D supervisor,is member of China Computer Federation (CCF).His main research interests include information security,automata theory and computational complexity theory.
  • Supported by:
    This work was supported by the National Key R&D Program of China (2016YFB0800100) and General Program of National Natural Science Foundation of China (61572444).

摘要: 随着7-Zip压缩软件的广范使用,破解7-Zip加密文档的口令对信息安全有着非常重要的意义。目前,破解7-Zip加密文档主要采用CPU和GPU平台,而潜在的口令空间大,计算复杂度高,在有限的时间内找到正确的口令需要更高性能的计算平台。因此,文中通过分析解密算法的PMC特性,采用可重构的FPGA硬件计算平台,使用流水线技术来实现数据拼接和SHA-256算法,并利用预计算和CSA方法优化SHA-256算法的关键路径,同时使用双端口RAM存储校验数据,从而满足算法的计算需求和存储需求,实现高效能的7-Zip解密算法。实验数据表明,文中提出的优化方法能大幅提升SHA-256算法的性能,使其吞吐量达到110.080Gbps,并且通过多种方法对解密算法进行优化,最终破解10位长度口令的速率达到了10608个/s,是CPU的226倍,GPU的1.4倍,且能效比是GPU的8倍,极大地提升了算法的性能,降低了高功耗需求。

关键词: 7-Zip解密, SHA-256, 高能效口令恢复, 可重构, 流水线, 双端口RAM

Abstract: With the wide range of 7-Zip compression software,7-Zip password cracking is very important for information security.Currently,cracking 7-Zip encryption documents mainly uses CPU and GPU platforms,and the potential for a large password space and high computational complexity requires a higher performance computing platform to find the correct password within a limited time.Therefore,by analyzing PMC characteristics of decryption algorithm,this paper adopted reconfigurable FPGA hardware computing platform,uses pipeline technology to realize data splicing and SHA-256 algorithm,used precomputation and CSA method to optimize the key path of SHA-256 algorithm,and used dual-port RAM to store verification data,thus satisfying the computational and storage requirements of the algorithm and realizing high-performance 7-Zip decryption algorithm.The experimental data show that the optimization method in this paper can greatly improve the performance of SHA-256 algorithm,making it throughput reach 110.080Gbps.The decryption algorithm is optimized by various methods,and finally the 10bit password is cracked to10608 per second,226 times that of the CPU,1.4 times that of the GPU,and 8 times that of the GPU, which greatly improves the performance and reduces the demand for high power consumption.

Key words: 7-Zip decryption, Dual port RAM, Energy-efficient password recovery, Pipeline, Reconfigurable, SHA-256

中图分类号: 

  • TP309
[1]CHEN F T,YUAN J L.Enhanced Key Derivation Function of HMAC-SHA-256 Algorithm in LTE Network[C]∥Fourth International Conference on Multimedia Information NETWORKING and Security.IEEE Computer Society,Washingdon,DC,USA,2012:15-18.
[2]ZHAO X J,GUO S Z,WANG T,et al.Improved Cache trace driven attack on AES and CLEFIA[J].Journal on Communications,2011,32(8):101-110.
[3]WANG D,JIAN G P,HUANG X Y,et al.Zipf’s Law in Passwords[J].IEEE Transactions on Information Forensics and Security,2017,12(11):2776-2791.
[4]MA J,YANG W N,LUO M,et al.A Study of Probabilistic Password Models[C]∥IEEE Symposium on Security and Privacy.USA:IEEE,2014:689-704.
[5]WANG D,ZHANG Z J,WANG P,et al.Targeted Online Password Guessing:An Underestimated Threat[C]∥Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security.New York:USA,ACM,2016:1242-1254.
[6]WANG P,WANG D,HUANG X Y.Advances in password security[J].Journal of Computer Research and Development,2016,53(10):2173-2188.
[7]KOZIEL B,AZARDERAKHSH R,KERMANI M M,et al. Post-Quantum Cryptography on FPGA Based on Isogenies on Elliptic Curves[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2017,64(1):86-99.
[8]ZHANG C,LI P,SUN G,et al.Optimizing FPGA-based Acce- lerator Design for Deep Convolutional Neural Networks[C]∥Proceesing of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.New York:ACM,2015:161-170.
[9]DABHADE S D,RATHNA G N,CHAUDHURY K N.A Reconfigurable and Scalable FPGA Architecture for Bilateral Filtering[J].IEEE Transactions on Industrial Electronics,2018,65:1459-1469.
[10]LIU P,LI S,DING Q.An Energy-Efficient Accelerator Based on Hybrid CPU-FPGA Devices for Password Recovery[J].IEEE Transactions on Computers,2019,68(2):170-181.
[11]ZHOU B,ZHANG Y Q,AN X J,et al.Optimization of RAR password brute-force cracking based on OpenCL [C]∥High-Performance Computing China 2014.2014:871-874.
[12]AN X J,JIA H P,ZHANG Y Q.Optimized Password Recovery for Encrypted RAR on GPUs[C]∥IEEE InternationalConfe-rence on High PERFORMANCE Computing and Communications.IEEE Computer Society,2015:591-598.
[13]LIU Z L,DONG X,LI D F.On the Hardware Implementations of the SHA-2(256,384,512) Hash Function[J].Microelectro-nics & Computer,2012,29(12):51-54.
[14]ALGREDO-BADILLO I,FEREGRINO-URIBE C,CUMPLIDO R,et al.FPGA-based implementation alternatives for the inner loop of the Secure Hash Algorithm SHA-256[J].Microprocessors & Microsystems,2013,37(6/7):750-757.
[15]JULIATO M,GEBOTYS C.A Quantitative Analysis of a Novel SEU-Resistant SHA-2 and HMAC Architecture for Space Missions Security[J].IEEE Transactions on Aerospace &Electronic Systems,2013,49(3):1536-1554.
[16]MICHAIL H E,ATHANASIOU G S,KELEFOURAS V,et al.On the exploitation of a high-throughput SHA-256 FPGA design for HMAC[J].Acm Transactions on Reconfigurable Technology & Systems,2012,5(1):1-28.
[17]TAN J,ZHOU Q L,SI X M,et al.Implementation and improvement of full-pipeline MD5 algorithm based on mimic compiter[J].Journal of Chinese Computer Systems,2017,38(6):1216-1220.
[18]LEI Y W,DOU Y,GUO S.High precision Scientific Computation Accumulator on FPGA[J].Chinese Journal of Computers,2012,35(1):112-122.
[19]WU Q,WANG X W,HUANG M.OpenFlow Switch Packets Pipeline Processing Mechanism Based on SDN[J].Computer Science,2018,45(10):295-299.
[20]LI Y,ZHANG D X,YU F.Technology Mapping of FPGA On-Chip-RAM in RTL Synthesis[J].Acta Electronica Sinica,2016,44(11):2660-2667.
[21]YU X F,LIU X B,HU B L,et al.Design of FIFO in High Speed Data Storage System Based on FPGA[J].Nuclear Electronics & Detection Technology,2010,30(1):59-62.
[22]LI B,ZHOU Q L,SI X M.Mimic computing for password reco- very[J].Future Generation Computer Systems,2018,84:58-77.
[23]ZHANG K,GUO F,ZHENG W et al.Design of a Pipeline-Coupled Instruction Loop Cache for Many-Core Processors[J].Journal of Computer Research and Development,2017,54(4):813-820.
[24]LIN B,LI S S,LIAO X K,et al.Seadown:SLA-Aware Size-Sca- ling Power Management in Heterogeneous MapReduce Cluster[J].Chinese Journal of Camputers,2013,36(5):977-987.
[1] 董丹丹, 宋康.
RIS辅助双向物联网通信系统性能分析
Performance Analysis on Reconfigurable Intelligent Surface Aided Two-way Internet of Things Communication System
计算机科学, 2022, 49(6): 19-24. https://doi.org/10.11896/jsjkx.220100064
[2] 傅思清, 黎铁军, 张建民.
面向粒子输运程序加速的体系结构设计
Architecture Design for Particle Transport Code Acceleration
计算机科学, 2022, 49(6): 81-88. https://doi.org/10.11896/jsjkx.210600179
[3] 郭彪, 唐麒, 文智敏, 傅娟, 王玲, 魏急波.
一种面向动态部分可重构片上系统的列表式软硬件划分算法
List-based Software and Hardware Partitioning Algorithm for Dynamic Partial Reconfigurable System-on-Chip
计算机科学, 2021, 48(6): 19-25. https://doi.org/10.11896/jsjkx.200700198
[4] 张登科, 王兴伟, 何强, 曾荣飞, 易波.
可重构数据中心网络研究综述
State-of-the-art Survey on Reconfigurable Data Center Networks
计算机科学, 2021, 48(3): 246-258. https://doi.org/10.11896/jsjkx.201100038
[5] 张元鸣, 虞家睿, 蒋建波, 陆佳炜, 肖刚.
面向MapReduce的中间数据传输流水线优化机制
Intermediate Data Transmission Pipeline Optimization Mechanism for MapReduce Framework
计算机科学, 2021, 48(2): 41-46. https://doi.org/10.11896/jsjkx.191000103
[6] 王喆, 唐麒, 王玲, 魏急波.
一种基于模拟退火的动态部分可重构系统划分-调度联合优化算法
Joint Optimization Algorithm for Partition-Scheduling of Dynamic Partial Reconfigurable Systems Based on Simulated Annealing
计算机科学, 2020, 47(8): 26-31. https://doi.org/10.11896/jsjkx.200500110
[7] 王国澎, 杨剑新, 尹飞, 蒋生健.
负载均衡的处理器运算资源分配方法
Computing Resources Allocation with Load Balance in Modern Processor
计算机科学, 2020, 47(8): 41-48. https://doi.org/10.11896/jsjkx.191000148
[8] 朱丽花, 王玲, 唐麒, 魏急波.
一种针对动态部分可重构SoC软硬件划分的高效MILP模型
Efficient MILP Model for HW/SW Partitioning of Dynamic Partial Reconfigurable SoC
计算机科学, 2020, 47(4): 18-24. https://doi.org/10.11896/jsjkx.190300001
[9] 吴琪, 王兴伟, 黄敏.
基于SDN的OpenFlow交换机数据包流水线处理机制
OpenFlow Switch Packets Pipeline Processing Mechanism Based on SDN
计算机科学, 2018, 45(10): 295-299. https://doi.org/10.11896/j.issn.1002-137X.2018.10.055
[10] 何璐蓓,厉俊男,杨翔瑞,孙志刚.
RESSP:基于FPGA的可重构SDN交换结构
RESSP:An FPGA-based REconfigurable SDN Switching Architecture
计算机科学, 2018, 45(1): 205-210. https://doi.org/10.11896/j.issn.1002-137X.2018.01.036
[11] 刘翱,邓旭东,李维刚.
基于自适应控制参数的改进水波优化算法
Improved Water Wave Optimization Algorithm with Adaptive Control Parameters
计算机科学, 2017, 44(7): 203-209. https://doi.org/10.11896/j.issn.1002-137X.2017.07.036
[12] 马丁,庄雷,兰巨龙.
可重构信息通信基础网络端到端模型的研究与探索
Research on End-to-End Model of Reconfigurable Information Communication Basal Network
计算机科学, 2017, 44(6): 114-120. https://doi.org/10.11896/j.issn.1002-137X.2017.06.020
[13] 朱淑芹,王文宏,孙忠贵.
对一种基于比特置乱的超混沌图像加密算法的选择明文攻击
Chosen Plaintext Attack on Image Encryption Algorithm Based on Bit Scrambling and Hyperchaos
计算机科学, 2017, 44(11): 273-278. https://doi.org/10.11896/j.issn.1002-137X.2017.11.041
[14] 都志辉,林璋熙,顾彦祺,Eric O.LEBIGOT,郭翔宇.
引力波cWB处理流水线的GPU加速
GPU Accelerated cWB Pipeline for Gravitational Waves Discovery
计算机科学, 2017, 44(10): 26-32. https://doi.org/10.11896/j.issn.1002-137X.2017.10.005
[15] 朱淑芹,李俊青,葛广英.
基于一个新的四维离散混沌映射的图像加密新算法
New Image Encryption Algorithm Based on New Four-dimensional Discrete-time Chaotic Map
计算机科学, 2017, 44(1): 188-193. https://doi.org/10.11896/j.issn.1002-137X.2017.01.036
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!