计算机科学 ›› 2019, Vol. 46 ›› Issue (7): 186-194.doi: 10.11896/j.issn.1002-137X.2019.07.029
刘长赟,杨宇迪,周丽华,赵丽红
LIU Chang-yun,YANG Yu-di,ZHOU Li-hua,ZHAO Li-hong
摘要: 流行社交位置是指大多数人日常生活中经常访问的位置,其广泛应用于推荐系统、定向广告应用等领域。随着基于位置的社交网络(Location-Based Social Network,LBSN)的迅速发展,流行社交位置的挖掘成为时空数据挖掘中的一个研究热点。然而,现有的研究主要是从LBSN中挖掘流行社交位置,忽略了流行社交位置的时间因素,因此,文中提出了带有时间标签的流行社交位置发现算法。该算法首先量化LBSN数据集中的时间信息,得到个体用户带有时间标签的频繁社交位置集合;然后计算这些带时间标签的位置在群体用户中的流行度;最后识别出符合要求的带时间标签的流行社交位置。文中采用约10个月的Foursquare东京用户签到数据对该算法的效率和正确性进行验证,结果表明,该算法能够较为准确地发现带有时间标签的流行社交位置。
中图分类号:
[1]YUAN Q,CONG G,MA Z,et al.Time-aware point-of-interest recommendation[C]∥Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM Press,2013. [2]YUAN Q,CONG G,AIXIN S.Graph-based Point-of-interest Recommendation with Geographical and Temporal Influences[C]∥Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management.Shanghai:ACM Press,2014:659-668. [3]GAO H,TANG J,HU X,et al.Exploring temporal effects for location recommendation on location-based social networks[C]∥Proceeding of the 7th ACM Conference on Recommender Systems.Hong Kong:ACM Press,2013:93-100. [4]BARAB SI A L.The origin of bursts and heavy tails in human dynamics[J].Nature,2005,435(7039):207-211. [5]FAN C,GUO J L,HAN X P,et al.A Review of Research on Human Dynamics[J].Complex Systems and Complexity Science,2011,8(2):1-17.(in Chinese) 樊超,郭进利,韩筱璞,等.人类行为动力学研究综述[J].复杂系统与复杂性科学,2011,8(2):1-17. [6]DOKUZ A S,CELIK M.Discovering socially important loca- tions of social media users[J].Expert Systems With Applications,2017(86):113-124. [7]JIM NEZ M,SORIANO J,CANTERA J M,et al.New Trends in Semantic-Based Location and Context-Aware Adaptation for Mobile Web Applications Development[J].Current Topics in Medicinal Chemistry,2012,3(5):513. [8]MOKBEL M F,LEVANDOSKI J J.Toward context and prefe- rence-aware location-based services[C]∥Proceedings of the 8th ACM International Workshop on Data Engineering for Wireless and Mobile Access.Providence RI:ACM Press,2009:25-32. [9]MAROULIS S,BOUTSIS I,KALOGERAKI V.Context-aware point of interest recommendation using tensor factorization[C]∥Proceedings of the 4th IEEE International Conference on Big Data.Washington DC:IEEE Press,2016:963-968. [10]PARK H,RHO S,PARK J.A Link-Based Ranking Algorithm for Semantic Web Resources:A Class-Oriented Approach Independent of Link Direction[J].Journal of Database Management,2017,22(1):1-25. [11]YAO L,SHENG Q Z,QIN Y,et al.Context-aware Point-of-Interest Recommendation Using Tensor Factorization with Social Regularization[C]∥Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval.Santiago:ACM Press,2015:1007-1010. [12]CHEN G,LU J,ZHANG Z N.Research on topic-based key node discovery in mobile social network[J].Application Research of Computers,2017,34(7):2010-2015.(in Chinese) 陈功,卢菁,张仲楠.基于主题划分的移动社交网络关键位置发现研究[J].计算机应用研究,2017,34(7):2010-2015. [13]LINDEN G,SMITH B,YORK J.Amazon.com Recommendations:Item-to-Item Collaborative Filtering[J].IEEE Internet Computing,2003,7(1):76-80. [14]SARWAR B,KARYPIS G,KONSTAN J,et al.Item-based collaborative filtering recommendation algorithms[C]∥Procee-dings of the International Conference on World Wide Web.Hong Kong:ACM Press,2001:285-295. [15]ZHANG C,WANG K.POI recommendation through cross-re- gion collaborative filtering[J].Knowledge and Information Systems,2016,46(2):369-387. [16]DAO T H,JEONG S R,AHN H.A novel recommendation mo- del of location-based advertising:Context-Aware Collaborative Filtering using GA approach[J].Expert Systems with Applications,2012,39(3):3731-3739. [17]CHEN C C,CHIANG M F,PENG W C.Mining and clustering mobility evolution patterns from social media for urban informatics[J].Knowledge and Information Systems,2016,47(2):381-403. [18]CELIKTEN E,FALHER G L,MATHIOUDAKIS M.Modeling Urban Behavior by Mining Geotagged Social Data[J].IEEE Transactions on Big Data,2017,3(2):220-233. [19]ZHAO K,TARKOMA S,LIU S Y,et al.Urban Human Mo- bility Data Mining:An Overview[C]∥Proceedings of the 4th IEEE International Conference on Big Data.Washington DC:IEEE Press,2016:1911-1920. [20]CELIK M,DOKUZ A S.Discovering Socio-spatio-temporal Important Location of Social Media Users[J].Journal of Computation Science,2017(22):85-98. [21]ZHANG D C,LI M,WANG C D.Point of interest recommendation with social and geographical influence[C]∥Proceedings of the 4th IEEE International Conference on Big Data.Washington DC:IEEE Press,2016:1070-1075. [22]YE M,YIN P,LEE W C,et al.Exploiting geographical influence for collaborative point-of-interest recommendation[C]∥Proceedings of the 34th ACM SIGIR international conference on Research and development in Information Retrieval.Beijing:ACM Press,2011:325-334. [23]LEVANDOSKI J J,SARWAT M,ELDAWY A,et al.LARS:A Location-Aware Recommender System[C]∥Proceedings of the IEEE 28th International Conference on Data Engineering.Arlington VA:IEEE Computer Society,2012:450-461. [24]BAO J,ZHENG Y,MOKBEL M F.Location-based and prefe- rence-aware recommendation using sparse geo-social networking data[C]∥Proceedings of the 20th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.Redondo Beach CA:ACM Press,2012:199-208. [25]CUI C,SHEN J,NIE L,et al.Augmented Collaborative Filte- ring for Sparseness Reduction in Personalized POI Recommendation[J].ACM Transactions on Intelligent Systems and Technology,2017,8(5):1-23. [26]CHO E,MYERS S A,LESKOVEC J.Friendship and mobility:user movement in location-based social networks[C]∥Procee-dings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Diego CA:ACM Press,2011:1082-1090. [27]ZHANG J D,CHOW C Y.TICRec:A Probabilistic Framework to Utilize Temporal Influence Correlations for Time-Aware Location Recommendations[J].IEEE Transactions on Services Computing,2016,9(4):633-646. [28]BALTRUNAS L,AMATRIAIN X.Towards time-dependant recommendation based on implicit feedback[R].New York:Workshop on Context-aware Recommender Systems,2009. [29]SI L F,ZHANG F Z,LIU W Y.A Time-aware POI Recommendation Method Exploiting User-based Collaborative Filtering and Location Popularity[C]∥Proceedings of the 2nd International Conference on Communications,Information Management and Network Security.Beijing:Destech Publicat.2017:17-25. [30]GAO H,TANG J,HU X,et al.Modeling temporal effects of human mobile behavior on location-based social networks[C]∥Proceedings of the 22nd ACM International Conference on Information and Knowledge Management.San Francisco CA:ACM Press,2013:1673-1678. [31]ZHANG J D,CHOW C Y.Spatiotemporal Sequential Influence Modeling for Location Recommendations:A Gravity-based Approach[J].ACM Transactions on Intelligent Systems & Technology,2015,7(1):1-25. [32]YE M,JANOWICZ K,LEE W C.What you are is when you are:the temporal dimension of feature types in location-based social networks[C]∥Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.Chicago IL:ACM Press,2011:102-111. [33]LI X,JIANG M,HONG H,et al.A Time-Aware Personalized Point-of-Interest Recommendation via High-Order Tensor Factorization[J].Acm Transactions on Information Systems,2017,35(4):1-23. [34]YING Y,CHEN L,CHEN G.A temporal-aware POI recom- mendation system using context-aware tensor decomposition and weighted HITS[J].Neurocomput.,2017(242):195-205. [35]YANG D,ZHANG D,ZHENG V W,et al.Modeling User Activity Preference by Leveraging User Spatial Temporal Characteristics in LBSNs[J].IEEE Transactions on Systems Man & Cybernetics Systems,2014,45(1):129-142. [36]LI M,WANG X C,ZHANG J,et al.Study on Check-in and Related Behaviors of Location-based Social Network Users[J].Computer Science,2013,40(10):72-76.(in Chinese) 李敏,王晓聪,张军,等.基于位置的社交网络用户签到及相关行为研究[J].计算机科学,2013,40(10):72-76. |
[1] | 黎嵘繁, 钟婷, 吴劲, 周帆, 匡平. 基于时空注意力克里金的边坡形变数据插值方法 Spatio-Temporal Attention-based Kriging for Land Deformation Data Interpolation 计算机科学, 2022, 49(8): 33-39. https://doi.org/10.11896/jsjkx.210600161 |
[2] | 马理博, 秦小麟. 话题-位置-类别感知的兴趣点推荐 Topic-Location-Category Aware Point-of-interest Recommendation 计算机科学, 2020, 47(9): 81-87. https://doi.org/10.11896/jsjkx.191100120 |
[3] | 游兰, 韩雪薇, 何正伟, 肖丝雨, 何渡, 潘筱萌. 基于改进Seq2Seq的短时AIS轨迹序列预测模型 Improved Sequence-to-Sequence Model for Short-term Vessel Trajectory Prediction Using AIS Data Streams 计算机科学, 2020, 47(9): 169-174. https://doi.org/10.11896/jsjkx.190800060 |
[4] | 陈炯, 张虎, 曹付元. 融合多因素的兴趣点协同推荐方法研究 Study on Point-of-interest Collaborative Recommendation Method Fusing Multi-factors 计算机科学, 2019, 46(10): 77-83. https://doi.org/10.11896/jsjkx.180901757 |
[5] | 罗惠,郭斌,於志文,王柱,封云. 基于网络拓扑和地理特征融合的朋友关系预测模型 Friendship Prediction Based on Fusion of Network Topology and Geographical Features 计算机科学, 2014, 41(6): 43-47. https://doi.org/10.11896/j.issn.1002-137X.2014.06.009 |
[6] | 李敏,王晓聪,张军,刘正捷. 基于位置的社交网络用户签到及相关行为研究 Study on Check-in and Related Behaviors of Location-based Social Network Users 计算机科学, 2013, 40(10): 72-76. |
|