Nothing Special   »   [go: up one dir, main page]

计算机科学 ›› 2017, Vol. 44 ›› Issue (8): 216-224.doi: 10.11896/j.issn.1002-137X.2017.08.037

• 人工智能 • 上一篇    下一篇

一种求解多校多车型校车路径问题的元启发算法

侯彦娥,孔云峰,党兰学,王玉璟   

  1. 河南大学计算机与信息工程学院 开封475004;河南大学黄河中下游数字地理技术教育部重点实验室 开封475004,河南大学黄河中下游数字地理技术教育部重点实验室 开封475004,河南大学计算机与信息工程学院 开封475004,河南大学计算机与信息工程学院 开封475004;河南大学黄河中下游数字地理技术教育部重点实验室 开封475004
  • 出版日期:2018-11-13 发布日期:2018-11-13
  • 基金资助:
    本文受国家自然科学基金(41401461),河南省教育厅自然科学重点项目(15A520009)资助

Metaheuristic Algorithm for Solving Multi-school Heterogeneous School Bus Routing Problem

HOU Yan-e, KONG Yun-feng, DANG Lan-xue and WANG Yu-jing   

  • Online:2018-11-13 Published:2018-11-13

摘要: 针对多种车型可用的多校校车路径问题(SBRP),建立数学模型,并提出了一种迭代局部搜索(ILS)元启发算法进行求解。该算法引入并改进了带时间窗的装卸一体化问题(PDPTW)求解中的点对邻域算子,并使用可变邻域下降搜索(VND)完成局部提升。局部提升过程中,设计一种基于路径段的车型调整策略,尽可能地调整车型,降低成本,并允许接受一定偏差范围内的邻域解以保证搜索的多样性。对于局部提升得到的最好解,使用多点移动方法对其进行扰动,以避免算法过早陷入局部最优。在国际基准测试案例上分别测试多校混载和不混载模式下算法的性能,实验结果验证了设计算法的有效性。进一步使用提出的算法求解单车型多校SBRP问题,并与后启发算法、模拟退火算法和记录更新法等算法进行比较,实验结果表明该算法仍然能够获得较好的优化效果。

关键词: 多车型校车路径问题,多校,迭代局部搜索,可变邻域下降,车型调整策略

Abstract: This paper aimed to deal with the multi-school bus routing problem (SBRP) with different types of school buses.Based on the iterated local search (ILS),we proposed a metaheuristic algorithm,which employs the neighborhood operators originally designed for pickup and delivery vehicle routing problem with time windows (PDPTW) to improve the route solution.In the local search phase,the algorithm adopts the variable neighborhood descent search (VND) to search neighborhood solutions by the neighborhood operators.Guided by an adjustment strategy based on route segment,these operators adjust bus type as much as possible in order to reduce the cost.Our algorithm accepts some worse neighborhood solutions within the scope of cost deviation to keep the search diversification,and it uses the perturbation method with multiple points shift to avoid trapping in the local optima.The results of benchmark datasets show that the proposed algorithm is effective to solve both the mixed-load SBRP and single-load SBRP.In addition,for the multi-school homogeneous SBRP,our algorithm outperforms existing algorithms,such as post-improvement heuristic,simulation annealing and record-to-record travel algorithm.

Key words: Heterogeneous school bus routing problem,Multi-school,Iterated local search,Variable neighborhood descent,Bus type adjustment strategy

[1] NEWTON R M,THOMAS W H.Design of school bus routes by computer[J].Socio-Economic Planning Sciences,1969,3(1):75-85.
[2] PARK J,KIM B I.The school bus routing problem:A review[J].European Journal of Operational Research,2010,202(2):311-319.
[3] DANG L X,CHEN X P,KONG Y F.Review of School BusRouting Problem:Concept,Model and Optimization Algorithms[J].Journal of Henan University (Natural Science),2013,43(6):682-691.(in Chinese) 党兰学,陈小潘,孔云峰.校车路径问题模型及算法研究进展[J].河南大学学报(自然科学版),2013,3(6):682-691.
[4] BRACA J,BRAMEL J,POSNER B,et al.A ComputerizedApproach to the New York City School Bus Routing Problem[J].IIE Transactions,1997,29(8):693-702.
[5] DANG L X.Optimization Algorithms for Large Scale MixedLoad School Bus Routing Problem [D].Kaifeng:Henan Univer-sity,2014.(in Chinese) 党兰学.大规模混载校车路径问题优化算法研究[D].开封:河南大学,2014.
[6] BOGL M,DOERNER K F,PARRAGH S N.The School Bus Routing and Scheduling Problem with Transfers[J].Networks,2015,65(2):180-203.
[7] CHEN X P,DANG L X,KONG Y F.A Meta-heuristic Algorithm to Solve the Large-Scale School Bus Scheduling Problem[J].Journal of Geo-Information Science,2013,15(6):879-885.(in Chinese) 陈小潘,党兰学,孔云峰.一种求解大规模校车调度问题的元启发式算法[J].地球信息科学学报,2013,5(6):879-885.
[8] SPADA M,BIERLAIRE M,LIEBLING T M.Decision-AidingMethodology for the School Bus Routing and Scheduling Problem[J].Transportation Science,2005,39(4):477-490.
[9] THANGIAH S R,FERGANY A,WILSON B,et al.School Bus Routing in Rural School Districts[C]∥Proceedings of the 9th International Conference on Computer-Aided Scheduling of Public Transport.Spring,2008:209-232.
[10] DE SOUZA L,SIQUEIRA P H.Heuristic Methods Applied to the Optimization School Bus Transportation Routes-A Real Case[C]∥23rd International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems.2010:247-256.
[11] PARK J,TAE H,KIM B I.A Post-improvement Procedure for the Mixed Load School Bus Routing Problem[J].European Journal of Operational Research,2012,217(1):204-213.
[12] KIM B,KIM S,PARK J.A school bus scheduling problem[J].European Journal of Operational Research,2012,218(2):577-585.
[13] CHEN X,KONG Y,DANG L,et al.Exact and MetaheuristicApproaches for a Bi-objective School Bus Scheduling Problem[J].Plos One,2015,0(7):e0132600.
[14] NANRY W P,BARNES J W.Solving the pickup and deliveryproblem with time windows using reactive tabu search[J].Transportation Research Part B Methodological,2000,34(2):107-121.
[15] WU B.Particle Swarm Optimization for Vehicle Routing Problem and its Application[D].Hangzhou:Zhejiang University of Technology,2008.(in Chinese) 吴斌.车辆路径问题的粒子群算法研究与应用[D].杭州:浙江工业大学,2008.
[16] DANG L X,HOU Y E,KONG Y F.Spatiotemporal Neighborhood Search for Solving Mixed-load School Bus Routing Problem[J].Computer Science,2015,2(4):221-225.(in Chinese) 党兰学,侯彦娥,孔云峰.时空相关的混载校车路径问题邻域搜索[J].计算机科学,2015,2(4):221-225.
[17] PENNA P H V,SUBRAMANIAN A,O CHI L S.An iterated local search heuristic for the heterogeneous fleet vehicle routing problem[J].Journal of Heuristics,2013,19(2):201-232.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!