Nothing Special   »   [go: up one dir, main page]

计算机科学 ›› 2015, Vol. 42 ›› Issue (3): 153-157.doi: 10.11896/j.issn.1002-137X.2015.03.032

• 信息安全 • 上一篇    下一篇

一类H布尔函数的代数次数、相关免疫性与代数免疫性的关系

黄景廉,王 卓,李 娟   

  1. 西北民族大学电气工程学院 兰州730030,西北民族大学电气工程学院 兰州730030,西北民族大学电气工程学院 兰州730030
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家自然科学基金项目(61262085)资助

On Relationship of Algebraic Degree,Correlation Immunity and Algebraic Immunity for a Class of H Boolean Functions

HUANG Jing-lian, WANG Zhuo and LI Juan   

  • Online:2018-11-14 Published:2018-11-14

摘要: 以布尔函数的导数和自定义的e-导数为研究工具,研究了一类特定Hamming重量的H布尔函数的代数次数、代数免疫性、相关免疫性之间的关联问题。得出H布尔函数的组成部分e-导数的代数次数决定了H布尔函数的代数次数;H布尔函数的e-导数与H布尔函数的代数免疫阶的大小紧密关联;H布尔函数的e-导数可将H布尔函数的代数免疫性、零化子、相关免疫性、代数次数联系到一起等。同时,导出了公式法和级联法两类求解H布尔函数最低代数次数零化子的不同方法。

关键词: H布尔函数,e-导数,导数,代数次数,代数免疫,相关免疫,关系

Abstract: Using the derivative of the Boolean function and the e-derivative defined by ourselves as research tools,we studied the relationship of algebraic degree,algebraic immunity and correlation immunity for H Boolean functions with a specific Hamming weight.We obtained the algebraic degree of the e-derivative which is a component of H Boolean functions deciding the algebraic degree of H Boolean functions.Besides,we determined the e-derivative of H Boolean functions which is closely related to the order of the algebraic immunity of H Boolean functions.We also checked the e-derivative of H Boolean functions which can put algebraic immunity,annihilators,correlation immunity and algebraic degree of H Boolean functions together.Meanwhile,we also deduced two kinds of methods which are formula method and cascade method.By using these two methods we could solve annihilators of the lowest algebraic degree of H Boolean functions.

Key words: H Boolean functions,e-derivative,Derivative,Algebraic degree,Algebraic immunity,Correlation immunity,Relationship

[1] Xiao G,Massey J.A Spectral Characterization of Correlation-Immune Combining Functions[J].IEEE Trans.on Inform.Theo-ry,1988,34(3):569-571
[2] Preneel B,Leekwijck W,Linden L,et al.Propagation Characteri-stics of Boolean Functions[M]∥Advances in Cryptology-EUROCRYPT’90,1991,473:161-173
[3] Pan S,Fu X,Zhang W.Construction of 1-ResilientBoolean Functions with Optimal Algebraic Immunity and Good Nonlinearity[J].Journal of Computer Science and Technology,2011,26(2):269-275
[4] Zheng Y,Zhang X.Plateaued functions:Information and Communication Security Second International Conference[C]∥ICICS’99.Sydney,Australia,1999,LNCS,1726:284-300
[5] Meier W,Pasalic E,Carle C.Algebraic attacks and decomposition of Boolean functions[C]∥Advances in Cryptology-EUROCRYPT 2004.Interlaken,Switzerland,2004,LNCS,3027:474-491
[6] 温巧燕,钮心忻,杨义先.现代密码学中的布尔函数[M].北京:科学出版社,2000
[7] Batten L M.Algebraic Attacks over GF(q)[C]∥Progress in Cryptology-INDOCRYPT 2004.Chennai,India,2005,LNCS,3348:84-91
[8] Armknecht F,Carlet C,Gaborit P,et al.Efficient Computationof Algebraic Immunity for Algebraic and Fast Algebraic Attacks[C]∥Advances in Cryptology-EUROCRYPT 2006St.Petersburg,Russia,2006,LNCS,4004:147-164
[9] Didier F,Tillich J.Computing the algebraic immunity efficiently[M]∥Fast Software Encryption 2006,2006,4047:359-374
[10] Zhang W,Wu C,Yu J.On the Annihilators of CryptographicBoolean Functions[J].Acta Electronica Sinica,2006,34(1):51-54
[11] Reed I S.A class of multiple-error-correcting codes and the decoding scheme[J].IRE Transactions on Information Theory,1954,4(4):38-49
[12] Akers S B.On a theory of Boolean functions[J].Journal of the Society for Industrial and Applied Mathematics,1959,7(4):487-498
[13] Li W,Wang Z,Huang J.The e-derivative of boolean functions and its application in the fault detection and cryptographic system[J].Kybernetes,2011,40(5/6):905-911
[14] 黄景廉,王卓.H布尔函数的相关免疫性与重量的关系[J].通信学报,2012,33(2):110-118

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!