Nothing Special   »   [go: up one dir, main page]

skip to main content
article
Open access

An interval constraint system for lattice domains

Published: 01 January 2004 Publication History

Abstract

We present a generic framework for defining and solving interval constraints on any set of domains (finite or infinite) that are lattices. The approach is based on the use of a single form of constraint similar to that of an indexical used by CLP for finite domains and on a particular generic definition of an interval domain built from an arbitrary lattice. We provide the theoretical foundations for this framework and a schematic procedure for the operational semantics. Examples are provided that illustrate how new (compound) constraint solvers can be constructed from existing solvers using lattice combinators and how different solvers (possibly on distinct domains) can communicate and hence, cooperate in solving a problem. We describe the language clp(L), which is a prototype implementation of this framework and discuss ways in which this implementation may be improved.

References

[1]
Aït-kaci, H. 1999. Warren's Abstract Machine: A Tutorial Reconstruction. The MIT Press, Cambridge, MA.]]
[2]
Allen, J. 1983. Maintaining knowledge about temporal intervals. Commun. ACM 26, 11, 832--843.]]
[3]
Apt, K. 1999. The rough guide to constraint propagation. In 5th International Conference on Principles and Practice of Constraint Programming (CP'99, Alexandria, Virginia), J. Jaffar, Ed. Lecture Notes in Computer Science, vol. 1713. Springer-Verlag, Berlin, Germany, 1--23.]]
[4]
Apt, K. 2000. The role of commutativity in constraint propagation algorithms. ACM Trans. Programm. Lang. Syst. 22, 6, 1002--1036.]]
[5]
Baader, F. and Schulz, K. 1995. On the combination of symbolic constraints, solution domains and constraints solvers. In 1st International Conference on Principles and Practice of Constraint Programming (CP'95, Cassis, France), U. Montanari and F. Rossi, Eds. Lecture Notes in Computer Science, vol. 976. Springer-Verlag, Berlin, Germany, 380--397.]]
[6]
Barth, P. and Bockmayr, A. 1996. Modelling 0-1 problems in CLP(PB). In 2nd International Conference on the Practical Application of Constraint Technology (PACT'96), M. Wallace, Ed. Prolog Management Group, London, U.K., 1--9.]]
[7]
Benhamou, F. 1995. Interval constraint logic programming. In Constraint Programming: Basics and Trends, A. Podelski, Ed. Lecture Notes in Computer Science, vol. 910. Springer-Verlag, Berlin, Germany, 1--21.]]
[8]
Benhamou, F., Goualard, F., Granvilliers, L., and Puget, J.-F. 1999. Revising hull and box consistency. In 16th International Conference on Logic Programming (ICLP'99, Las Cruces, New Mexico,) D. De Schreye, Ed. The MIT Press, Cambridge, MA, 230--244.]]
[9]
Benhamou, F. and Older, W. 1997. Applying interval arithmetic to real, integer and Boolean constraints. J. Logic Programm. 32, 1 (July), 1--24.]]
[10]
Birkhoff, G. 1967. Lattice Theory, 3rd ed. Coloquium Publications, vol. XXV. American Mathematical Society, Providence RI.]]
[11]
Bistarelli, S., Montanari, U., and Rossi, F. 1995. Constraint solving over semirings. In 14th International Joint Conference on Artificial Intelligent (IJCAI'95, Québec, Canada). Morgan Kaufman, San Francisco, CA, 624--630.]]
[12]
Carlsson, M., Ottosson, G., and Carlson, B. 1997. An open-ended finite domain constraint solver. In 9th International Symposium on Programming Languages: Implementations, Logics and Programs (PLILP'97, Southampton, U.K.), U. Montanari and F. Rossi, Eds. Lecture Notes in Computer Science, vol. 1292. Springer-Verlag, Berlin, Germany, 191--206.]]
[13]
Cleary, J. 1987. Logical arithmetic. Fut. Comput. Syst. 2, 2, 125--149.]]
[14]
Codognet, P. and Diaz, D. 1993. Boolean constraint solving using clp(FD). In 1993 International Symposium on Logic Programming (ILPS'93 Vancouver, British Columbia, Canada), D. Miller, Ed. The MIT Press, Cambridge, MA, 525--539.]]
[15]
Codognet, P. and Diaz, D. 1994. clp(B): combining simplicity and efficiency in Boolean constraint solving. In 6th International Symposium on Programming Languages Implementation and Logic Programming (PLILP'94, Madrid, Spain). Lecture Notes in Computer Science, vol. 844. Springer-Verlag, Berlin, Germany, 244--260.]]
[16]
Codognet, P. and Diaz, D. 1996a. Compiling constraints in clp(FD). J. Logic Programm. 27, 3, 185--226.]]
[17]
Codognet, P. and Diaz, D. 1996b. A simple and efficient Boolean solver for constraint logic programming. J. Automat. Reason. 17, 1, 97--129.]]
[18]
Davey, B. and Priestley, H. 1990. Introduction to Lattices and Order. Cambridge University Press, Cambridge, England.]]
[19]
Diaz, D. and Codognet, P. 1993. A minimal extension of the WAM for clp(FD). In 10th International Conference on Logic Programming (ICLP'93, Budapest, Hungary), D. Warren, Ed. The MIT Press, Cambridge, MA, 774--790.]]
[20]
Diaz, D. and Codognet, P. 2001. Design and implementation of the GNU prolog system. J. Funct. Logic Programm. 2001, 6 (Oct.).]]
[21]
Fernández, A. 2000. clp(L) version 0.21, user manual. Available online at http://www.lcc.uma.es/∼afdez/generic.]]
[22]
Fernández, A. 2002. A generic, collaborative framework for interval constraint solving. Ph.D. dissertation, E.T.S.I.I., Dpto. Lenguajes y Ciencias de la Computación, University of Málaga, Spain. English version available online at http://www.lcc.uma.es/∼afdez/papers.html.]]
[23]
Fernández, A. and Hill, P. 1999a. Interval constraint solving over lattices using chaotic iterations. In ERCIM/COMPULOG Workshop on Constraints, K.Apt, A. Kakas, E. Monfroy, and F. Rossi, Eds. Dept., of Computer Science, University of Cyprus, Paphos, Cyprus. Available online at http://www.cwi.nl/ERCIM/WG/Constraints/Workshops/Workshop4/Program.]]
[24]
Fernández, A. and Hill, P. 1999b. An interval lattice-based constraint solving framework for lattices. In 4th International Symposium on Functional and Logic Programming (FLOPS'99, Tsukuba, Japan), A. Middeldorp and T. Sato, Eds. Lecture Notes in Computer Science, vol. 1722. Springer-Verlag, Berlin, Germany, 194--208.]]
[25]
Fernández, A. and Hill, P. 2000. A comparative study of eight constraint programming languages over the Boolean and finite domains. Constraints 5, 3, 275--301.]]
[26]
Frühwirth, T. 1998. Theory and practice of constraint handling rules. J. Logic Programm. 37, 95--138.]]
[27]
Georget, Y. and Codognet, P. 1998. Compiling semiring-based constraints with clp(FD,S). In 4th International Conference on Principles and Practice of Constraint Programming (CP'98, Pisa, Italy), M. Maher and J.-F. Puget, Eds. Lecture Notes in Computer Science, vol. 1520. Springer-Verlag, Berlin, Germany, 205--219.]]
[28]
Gervet, C. 1997. Interval propagation to reason about sets: Definition and implementation of a practical language. Constraints 1, 3, 191--244.]]
[29]
Goualard, F., Benhamou, F., and Granvilliers, L. 1999. An extension of the WAM for hybrid interval solvers. J. Funct. Logic Programm. 1999, 1 (April), 1--36. Special issue of Workshop on Parallelism and Implementation Technology for (Constraint) Logic Programming Languages.]]
[30]
Hickey, T. 2000. CLIP: a CLP(Intervals) dialect for metalevel constraint solving. In 2nd International Workshop on Practical Aspects of Declarative Languages (PADL'2000, Boston, Massachusetts), E. Pontelli and V. Costa, Eds. Lecture Notes in Computer Science, vol. 1753. Springer-Verlag, Berlin, Germany, 200--214.]]
[31]
Hofstedt, P. 2000. Better communication for tighter cooperation. In 1st International Conference on Computational Logic (CL'2000, London, U.K.), J. W. Lloyd, V. Dahl, U. Furbach, M. Kerber, K. Lau, C. Palamidessi, L. Pereira, Y. Sagiv, and P. J. Stuckey, Eds. Lecture Notes in Computer Science, vol. 1861. Springer-Verlag, Berlin, Germany, 342--357.]]
[32]
If/Prolog. 1994. IF/Prolog V5.0A, Constraints Package. Siemens Nixdorf Informationssysteme AG, Munich, Germany.]]
[33]
ISO/IEC. 1995. ISO/IEC 13211-1: 1995 Information Technology---Programming Languages---Prolog---Part 1: General Core. International Standard Organization, Geneva, Switzerland.]]
[34]
Jaffar, J., Michaylov, S., Stuckey, P., and Yap, R. 1992. The CLP(R) language and system. ACM Trans. Programm. Lang. Syst. 14, 3, 339--395.]]
[35]
Le Provost, T. and Wallace, M. 1993. Generalized constraint propagation over the CLP scheme. J. Logic Programm. 16, 3 (Aug.), 319--359.]]
[36]
Lee, J. and van Emden, M. 1993. Interval computation as deduction in CHIP. Journal Logic Programm. (Special Issue on Constraint Logic Programming) 16, 3-4, 255--276.]]
[37]
Moore, R. 1966. Interval Analysis. Prentice Hall, Englewood Cliffs, NJ.]]
[38]
N'Dong, S. 1997. Prolog IV ou la programmation par contraintes selon PrologIA. In Sixièmes Journées Francophones de Programmation Logique et Programmation par Contraintes (JFPLC'97). Edition HERMES, Orléans, France, 235--238.]]
[39]
Older, W. 1989. Interval arithmetic specification. Tech. Rep. Bell-Northern, Research Computing Research Laboratory, Ottawa, Ontario, Canada.]]
[40]
Older, W. and Vellino, A. 1993. Constraint arithmetic on real intervals. In Constraint Logic Programming: Selected Research, F. Benhamou and A. Colmesauer, Eds. The MIT Press, Cambridge, MA, 175--195.]]
[41]
Refalo, P. and Van Hentenryck, P. 1996. CLP(Rlin) revised. In Joint International Conference and Symposium on Logic Programming (JICSLP'96, Bonn, Germany), M. Maher, Ed. The MIT Press, Cambridge, MA, 22--36.]]
[42]
Schiex, T., Fargier, H., and Verfaillie, G. 1995. Valued constraint satisfaction problems: Hard and easy problems. In 14th International Joint Conference on Artificial Intelligent (IJCAI'95, Québec, Canada). Morgan Kaufman, San Francisco, CA, 631--637.]]
[43]
Sicstus Manual. 1994. SICStus Prolog User's Manual, Release 3#5. The Intelligent Systems Laboratory, Swedish Institute of Computer Science. Web site: http://www.sics.se.]]
[44]
Sidebottom, G. and Havens, W. 1992. Hierarchical arc consistency for disjoint real intervals in constraint logic programming. Computat. Intell. 8, 4, 601--623.]]
[45]
Slavík, V. 1986. A note on the lattice of intervals of a lattice. Algebra Universalis 23, 1, 22--23.]]
[46]
Van Hentenryck, P., Saraswat, V., and Deville, Y. 1998. Design, implementation and evaluation of the constraint language cc(FD). J. Logic Programm. 37, 1--3 (Oct.), 139--164.]]
[47]
Walinsky, C. 1989. CLP(Σ*): Constraint logic programming with regular sets. In 6th International Conference on Logic Programming (ICLP'89, Lisbon, Portugal), G. Levi and M. Martelli, Eds. The MIT Press, Cambridge, MA, 181--196.]]

Cited By

View all
  • (2020)Modular Constraint Solver Cooperation via Abstract InterpretationTheory and Practice of Logic Programming10.1017/S147106842000016220:6(848-863)Online publication date: 22-Sep-2020
  • (2019)Spacetime ProgrammingProceedings of the 21st International Symposium on Principles and Practice of Declarative Programming10.1145/3354166.3354183(1-16)Online publication date: 7-Oct-2019
  • (2019)Combining Constraint Languages via Abstract Interpretation2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)10.1109/ICTAI.2019.00016(50-58)Online publication date: Nov-2019
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Programming Languages and Systems
ACM Transactions on Programming Languages and Systems  Volume 26, Issue 1
January 2004
220 pages
ISSN:0164-0925
EISSN:1558-4593
DOI:10.1145/963778
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 January 2004
Published in TOPLAS Volume 26, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Constraint
  2. cooperation
  3. indexicals
  4. lattice
  5. propagation

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)51
  • Downloads (Last 6 weeks)5
Reflects downloads up to 17 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2020)Modular Constraint Solver Cooperation via Abstract InterpretationTheory and Practice of Logic Programming10.1017/S147106842000016220:6(848-863)Online publication date: 22-Sep-2020
  • (2019)Spacetime ProgrammingProceedings of the 21st International Symposium on Principles and Practice of Declarative Programming10.1145/3354166.3354183(1-16)Online publication date: 7-Oct-2019
  • (2019)Combining Constraint Languages via Abstract Interpretation2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)10.1109/ICTAI.2019.00016(50-58)Online publication date: Nov-2019
  • (2018)Enhancing set constraint solvers with bound consistencyExpert Systems with Applications: An International Journal10.1016/j.eswa.2017.09.05692:C(485-494)Online publication date: 1-Feb-2018
  • (2009)On the cooperation of the constraint domains ℋ, ℛ, and ℱ in cflpTheory and Practice of Logic Programming10.1017/S14710684090037809:4(415-527)Online publication date: 1-Jul-2009
  • (2004)A Generic, Collaborative Framework for Interval Constraint SolvingAI Communications10.5555/1218715.121871917:3(171-174)Online publication date: 1-Aug-2004

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media