Nothing Special   »   [go: up one dir, main page]

skip to main content
article
Free access

Modeling for text compression

Published: 01 December 1989 Publication History

Abstract

The best schemes for text compression use large models to help them predict which characters will come next. The actual next characters are coded with respect to the prediction, resulting in compression of information. Models are best formed adaptively, based on the text seen so far. This paper surveys successful strategies for adaptive modeling that are suitable for use in practical text compression systems.
The strategies fall into three main classes: finite-context modeling, in which the last few characters are used to condition the probability distribution for the next one; finite-state modeling, in which the distribution is conditioned by the current state (and which subsumes finite-context modeling as an important special case); and dictionary modeling, in which strings of characters are replaced by pointers into an evolving dictionary. A comparison of different methods on the same sample texts is included, along with an analysis of future research directions.

References

[1]
ABRAMSON, D. M. 1989. An adaptive dependency source model for data compression. Commun. ACM 32, 1 (Jan.), 77-83.
[2]
ANGLUIN, D., AND SMITH, C. H. 1983. Inductive inference: Theory and methods. Cornput. Surv. 15, 3 (Sept.), 237-269.
[3]
AUSLANDER, M., HARRISON, W., MILLER, V., AND WEGMAN, M. 1985. PCTERM: A terminal emulator using compression. In Proceedings of the IEEE Globecom '85. IEEE Press, pp. 860-862.
[4]
BAUM, L. E., PETRIE, T., $OULES, G., AND WEISS, N. 1970. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Star. 41,164-171.
[5]
BELL, T. C. 1986. Better OPM/L text compression. IEEE Trans. Commun. COM-34, 12 (Dec.), 1176-1182.
[6]
BELL, T. C. 1987. A unifying theory and improvements for existing approaches to text compression. Ph.D. dissertation, Dept. of Computer Science, Univ. of Canterbury, New Zealand.
[7]
BELL, T. C. 1989. Longest match string searching for Ziv-Lempel compression. Res. Rept. 6/89, Dept. of Computer Science, Univ. of Canterbury, New Zealand.
[8]
BELL, T. C., AND MOFFAT, A. M. 1989. A note on the DMC data compression scheme. Computer J. 32, 1 (Feb.), 16-20.
[9]
BELL, T. C., AND WITTEN, I. H. 1987. Greedy macro text compression. Res. Rept. 87/285/33. Department of Computer Science, University of Calgary.
[10]
BENTLEY, J. L., SLEATOR, D. D., TARJAN, R. E., AND WEI, V. K. 1986. A locally adaptive data compression scheme. Commun. 29, 4 (Apr.), 320-330.
[11]
BOOKSTEIN, A., AND FOUTY, G. 1976. A mathematical model for estimating the effectiveness of bigram coding. Inf. Process. Manage. 12.
[12]
BRENT, R. P. 1987. A linear algorithm for data compression. Aust. Comput. J. 19, 2, 64-68.
[13]
CAMERON, R. D. 1986. Source encoding using syntactic information source models. LCCR Tech. Rept. 86-7, Simon Fraser University.
[14]
CLEARY, J. G. 1980. An associative and impressible computer. Ph.D. dissertation. Univ. of Canterbury, Christchurch, New Zealand.
[15]
CLEARY, J. G., AND WITTEN, I. H. 1984a. A comparison of enumerative and adaptive codes. IEEE Trans. Inf. Theory, IT-30, 2 (Mar.), 306-315.
[16]
CLEARY, J. G., AND WlTTEN, I. H. 1984b. Data compression using adaptive coding and partial string matching. IEEE Trans. Commun. COM- 32, 4 (Apr.), 396-402.
[17]
COOrER, D., AND LYNCH, M. F. 1982. Text compression using variable-to-fixed-length encodings. J. Am. Soc. Inf. Sck (Jan.), 18-31.
[18]
CORMACK, G. V., AND HORSrOOL, R. N. 1984. Algorithms for adaptive Huffman codes. Inf. Process. Lett. 18, 3 (Mar.), 159-166.
[19]
CORMACK, G. V., AND HORSPOOL, R. N. 1987. Data compression using dynamic Markov modelling. Comput. J. 30, 6 (Dec.), 541-550.
[20]
CORTESI, D. 1982. An effective text-compression algorithm. Byte 7, i (Jan.), 397-403.
[21]
COVER, T. M., ANt) KING, R. C. 1978. A convergent gambling estimate of the entropy of English. IEEE Trans. inf. Theory IT-24, 4 (Jul.), 413-421.
[22]
DARRAGH, J. J., WITTEN, I. H., AND CLEARY, J. G. 1983. Adaptive text compression to enhance a modem. Res. Rept. 83/132/21. Computer Science Dept., Univ. of Calgary.
[23]
ELIAS, P. 1975. Universal codeword sets and representations of the integers. IEEE Trans. Inf. Theory IT-21, 2 (Mar.), 194-203.
[24]
ELIAS, P. 1987. Interval and recency rank source coding: Two on-line adaptive variable-length schemes. IEEE Trans. Inf. Theory IT-33, 1 (Jan.), 3-10.
[25]
EL GAMAL, A. A., HEMACHANDRA, L. A., SHPERLING, I., AND WEI, V. K. 1987. Using simulated annealing to design good codes. IEEE Trans. Inf. Theory, IT-33, 1, 116-123.
[26]
EVANS, T. G. 1971. Grammatical inference techniques in pattern analysis. In Software Engineering, J. Tou, Ed. Academic Press, New York, pp. 183-202.
[27]
FALLER, N. 1973. An adaptive system for data compression. Record of the 7th Asilomar Conference on Circuits, Systems and Computers. Naval Postgraduate School, Monterey, CA, pp. 593-597.
[28]
FIALA, E. R., AND GREENE, D. H. 1989. Data compression with finite windows. Commun. A CM 32, 4 (Apr.), 490-505.
[29]
FLAJOLET, P. 1985. Approximate counting: A detailed analysis. Bit 25, 113-134.
[30]
GAINES, B. R. 1976. Behaviour/structure transformations under uncertainty. Int. J. Man-Mach. Stud. 8, 337-365.
[31]
GAINES, B. R. 1977. System identification, approximation and complexity. Int. J. General Syst. 3, 145-174.
[32]
GALLAGER, R. G. 1978. Variations on a theme by Huffman. IEEE Trans. Inf. Theory IT-24, 6 (Nov.), 668-674.
[33]
GOLD, E. M. 1978. On the complexity of automaton identification from given data. Inf. Control 37, 302-320.
[34]
GONZALEZ-SMITH, M. E., AND STORER, J. A. 1985. Parallel algorithms for data compression. J. ACM 32, 2, 344-373.
[35]
GOTrLIEB, D., HAGERTH, S. A., LEHOT, P. G. H., AND RABiNOWITZ, H. S. 1975. A classification of compression methods and their usefulness for a large data processing center. National Comput. Conf. 44, 453-458.
[36]
GUAZZO, M. 1980. A general minimum-redundancy source-coding algorithm. IEEE Trans. Inf. Theory IT-26, i (Jan.), 15-25.
[37]
HELD, G. 1983. Data Compression: Techniques and Applications, Hardware and Software Considerations. Wiley, New York.
[38]
HELMAN, D. R., AND LANGDON, G. G. 1988. Data compression. IEEE Potentials (Feb.), 25-28.
[39]
HORSPOOL, R. N., AND CORMACK, G. V. (1983). Data compression based on token recognition. Unpublished.
[40]
HORSPOOL, R. N., AND CORMACK, G. V. 1986. Dynamic Markov modelling--A prediction technique. In Proceedings of the International Conference on the System Sciences, Honolulu, Hi, pp. 7OO-7O7.
[41]
HUFFMAN, D. A. 1952. A method for the construction of minimum-redundancy codes. In Proceedings of the Institute of Electrical and Radio Engineers 40, 9 (Sept.), pp. 1098-1101.
[42]
HUNTER, R., AND ROBINSON, A. H. 1980. International digital facsimile coding standards. In Proceedings of the Institute of Electrical and Electronic Engineers 68, 7 (Jul.), pp. 854-867.
[43]
JAGGER, D. 1989. Fast Ziv-Lempel decoding using RISC architecture. Res. Rept., Dept. of Computer Science, Univ. of Canterbury, New Zealand.
[44]
JAKOBSSON, M. 1985. Compression of character strings by an adaptive dictionary. BIT 25, 4, 593-603.
[45]
JAMISON, D., AND JAMISON, K. 1968. A note on the entropy of partially-known languages. Inf. Control 12, 164-167.
[46]
JEWELL, G. C. 1976. Text compaction for information retrieval systems. IEEE Syst., Man and Cybernetics Soc. Newsletter 5, 47.
[47]
JONES, D. W. 1988. Application of splay trees to data compression. Commun. ACM 31, 8 (Aug.), 996-1007.
[48]
KATAJAINEN, J., AND RAITA, T. 1987a. An approximation algorithm for space-optimal encoding of a text. Res. Rept., Dept. of Computer Science, Univ. of Turku, Turku, Finland.
[49]
KATAJAINEN, J., AND RAITA, T. 1987b. An analysis of the longest match and the greedy heuristics for text encoding. Res. Rept., Dept. of Computer Science, Univ. of Turku, Turku, Finland.
[50]
KATAJAINEN, J., PENTTONEN, M., AND TEUHOLA, J. 1986. Syntax-directed compression of program files. Software--Practice and Experience 16, 3, 269-276.
[51]
KNUTH, D. E. 1973. The Art of Computer Programming. Vol. 2, Sorting and Searching. Addison- Wesley, Reading, MA.
[52]
KNUTH, D. E. 1985. Dynamic Huffman coding. J. Algorithms 6, 163-180.
[53]
LANGOON, G. G. 1983. A note on the Ziv-Lempel model for compressing individual sequences. IEEE Trans. Inf. Theory IT-29, 2 (Mar.), 284-287.
[54]
LANGDON, G. C. 1984. An introduction to arithmetic coding, iBM J. Res. Dev. 28, 2 (Mar.), 135-149.
[55]
LANGDON, G. G., AND RmSANrN, J. 1981. Compression of black-white images with arithmetic coding. IEEE Trans. Cornmun. COM-29, 6 (Jun.), 858-867.
[56]
LANGDON, G. G., AND RISSANEN, J. J. 1982. A simple general binary source code. IEEE Trans. Inf. Theory IT-28 (Sept.), 800-803.
[57]
LANGOON, G. G., ANO RISSANEN, J. J. 1983. A doubly-adaptive file compression algorithm. IEEE Trans. Commun. COM-31, 11 (Nov.), 1253-1255.
[58]
LrLrWER, D. A., ANO HiRSCHBERG, D. S. 1987. Data compression. Comput. Surv. 13, 3 (Sept.), 261-296.
[59]
LEMPrL, A., AND ZlV, J. 1976. On the complexity of finite sequences. IEEE Trans. Inf. Theory IT-22, i (Jan.), 75-81.
[60]
LEViNSON, S. E., RABINER, L. R., ANO SONOHI, M. 1983. An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition. Bell Syst. Tech. J. 62, 4 (Apr.), 1035-1074.
[61]
LLEWELLYN, Z. A. 1987. Data compression for a source with Markov characteristics. Comput. J. 30, 2, 149-156.
[62]
LYNCH, M. F. 1973. Compression of bibliographic files using an adaptation of run-length coding. Inf. Storage Retrieval 9, 207-214.
[63]
LYNCH, T. J. 1985. Data Compression--Techniques and Applications. Lifetime Learning Publications, Belmont, CA.
[64]
MAYNE, A., AND JAMES, E. B. 1975. Information compression by factorizing common strings. Comput. J. 18, 2, 157-160.
[65]
G. & C. MERRIAM COMPANY 1963. Webster's Seventh New Collegiate Dictionary. Springfield, MA.
[66]
MILLER, V. S., AND WEC, MAN, M. N. 1984. Variations on a theme by Ziv and Lempel. In Combinatorial Algorithms on Words. A. Apostolico and Z. Galil, Eds. NATO ASI Series, Vol. F12. Springer-Verlag, Berlin, pp. 131-140.
[67]
MOrFAT, A. 1987. Word based text compression. Res. Rept., Dept. of Computer Science, Univ. of Melbourne, Victoria, Australia.
[68]
MOFrAT, A. 1988a. A data structure for arithmetic encoding on large alphabets. In Proceedings of the 11th Australian Computer Science Conference. Brisbane, Australia (Feb.), pp. 309-317.
[69]
MOFFAT, A. 1988b. A note on the PPM data compression algorithm. Res. Rept. 88/7, Dept. of Computer Science, Univ. of Melbourne, Victoria, Australia.
[70]
MORRIS, R. 1978. Counting large numbers of events in small registers. Commun. ACM 21, 10 (Oct.), 840-842.
[71]
MORRmON, D. R. 1968. PATRICIA--Practical Algorithm To Retrieve Information Coded In Alphanumeric. J. A CM 15, 514-534.
[72]
OZEKI, K. 1974a. Optimal encoding of linguistic information. Systems, Computers, Controls 5, 3, 96-103. Translated from Denshi Tsushin Gakkai Ronbunshi, Vol. 57-D, No. 6, June 1974, pp. 361-368.
[73]
OZEKI, K. 1974b. Stochastic context-free grammar and Markov chain. Systems, Computers, Controls 5, 3, 104-110. Translated from Denshi Tsushin Gakkai Ronbunshi, Vol. 57-D, No. 6, June 1974, pp. 369-375.
[74]
OZEKI, K. 1975. Encoding of linguistic information generated by a Markov chain which is associated with a stochastic context-free grammar. Systems, Computers, Controls 6, 3, 75-80. Translated from Denshi Tsushin Gakkai Ronbunshi, Vol. 58-D, Nol. 6, June 1975, pp. 322-327.
[75]
PASCO, R. 1976. Source coding algorithms for fast data compression. Ph.D. dissertation. Dept. of Electrical Engineering, Stanford Univ.
[76]
PIKE, J. 1981. Text compression using a 4 bit coding system. Comput. J. 24, 4.
[77]
RAmNER, L. R., AND JUANG, B. H. 1986. An Introduction to Hidden Markov Models. IEEE ASS P Mag. (Jan.).
[78]
RAITA, T., AND TEUHOLA, J. (1987). Predictive text compression by hashing. A CM Conference on Information Retrieval, New Orleans.
[79]
RISSANEN, J. J. 1976. Generalized Kraft inequality and arithmetic coding. IBM J. Res. Dev. 20, (May), 198-203.
[80]
RlSSANEN, J. J. 1979. Arithmetic codings as number representations. Acta Polytechnic Scandinavica, Math 31 (Dec.), 44-51.
[81]
RISSANEN, J. 1983. A universal data compression system. IEEE Trans. Inf. Theory IT-29, 5 (Sept.), 656-664.
[82]
RISSANEN, J., AND LANGDON, G. G. 1979. Arithmetic coding. IBM J. Res. Dev. 23, 2 (Mar.), 149-162.
[83]
RlSSANEN, J., AND LANGDON, G. G. 1981. Universal modeling and coding. IEEE Trans. Inf. Theory IT-27, 1 (Jan.), 12-23.
[84]
ROBERTS, M. G. 1982. Local order estimating Markovian analysis for noiseless source coding and authorship identification. Ph.D. dissertation. Stanford Univ.
[85]
ROOEH, M., PRATT, V. R., AND EVEN, S. 1981. Linear algorithm for data compression via string matching. J. ACM 28, 1 (Jan.), 16-24.
[86]
RUBIN, F. 1976. Experiments in text file compression. Commun. ACM 19, 11, 617-623.
[87]
RUBIN, F. 1979. Arithmetic stream coding using fixed precision registers. IEEE Trans. In/. Theory IT-25, 6 (Nov.), 672-675.
[88]
RYABKO, B. Y. 1980. Data compression by means of a "book stack." Problemy Peredachi Informatsii 16, 4.
[89]
SCHIEBER, W. D., AND THOMAS, G. W. 1971. An algorithm for compaction of alphanumeric data. J. Library Automation 4, 198-206.
[90]
SCHUEGRAF, E. J., AND HEAPS, H. S. 1973. Selection of equifrequent word fragments for information retrieval. Inf. Storage Retrieval 9, 697-711.
[91]
SCHUE6RA~, E. J., AND HEAPS, H. S. 1974. A comparison of algorithms for data-base compression by use of fragments as language elements. Inf. Storage Retrieval 10, 309-319.
[92]
SHANNON, C. E. 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27 (Jul.), 398-403.
[93]
SHANNON, C. E. 1951. Prediction and entropy of printed English. Bell Syst. Tech. J. (Jan.), 50-64.
[94]
SNYDERMAN, M., AND HUNT, B. 1970. The myriad virtues of text compaction. Datamation I (Dec.), 36-40.
[95]
STORER, J. A. 1977. NP-completeness results concerning data compression. Tech. Rept. 234. Dept. of Electrical Engineering and Computer Science, Princeton Univ., Princeton, NJ.
[96]
STORER, J. A. 1988. Data Compression: Methods and Theory. Computer Science Press, Rockville, MD.
[97]
STORER, J. A., AND SZYMANSKI, T. G. 1982. Data compression via textual substitution. J. ACM 29, 4 (Oct.), 928-951.
[98]
SVANKS, M. I. 1975. Optimizing the storage of alphanumeric data. Can. Datasyst. (May), 38-40.
[99]
TAN, C. P. 1981. On the entropy of the Malay language, iEEE Trans. Inf. Theory IT-27, 3 (May), 383-384.
[100]
THOMAS, S. W., MCKm, J., DAVIES, S., TURKOWSKI, K., WOODS, J. A., AND OROST, J. W. 1985. Compress (Version 4.0) program and documentation. Available from joe(~petsd. UUCP.
[101]
TISCHER, P. 1987. A modified Lempel-Ziv-Welch data compression scheme. Aust. Comp. Sck Commun. 9, 1, 262-272.
[102]
TODD, S., LANGDON, G. G., AND RISSANEN, J. 1985. Parameter reduction and context selection for compression of grey-scale images. IBM J. Res. Dev. 29, 2 (Mar.), 188-193.
[103]
TROPPER, R. 1982. Binary-coded text, a compression method. Byte 7, 4 (Apr.), 398-413.
[104]
VITTER, J. S. 1987. Design and analysis of dynamic Huffman codes. J. ACM 34, 4 (Oct.), 825-845.
[105]
VITTER, J. S. 1989. Dynamic Huffman coding. ACM Trans. Math. Softw. 15, 2 (Jun.), 158-167.
[106]
WAGNER, R. A. 1973. Common phrase and minimum-space text storage. Commun. A CM 16, 3, 148-152.
[107]
WALKER, D. E., AND AMSLER, R. A. 1986. The use of machine-readable dictionaries in sublanguage analysis. In Analysing languages in restricted domains: Sublanguage description and processing, R. Grishman and R. Kittridge, Eds. Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 69-83.
[108]
WELCH, T. A. 1984. A technique for high-performance data compression. IEEE Computer 17, 6 (Jun.), 8-19.
[109]
WHITE, H. E. 1967. Printed English compression by dictionary encoding. In Proceedings of the Institute of Electrical and Electronic Engineers 55, 3, 390-396.
[110]
WILLIAMS, R. 1988. Dynamic-history predictive compression. Inf. Syst. 13, 1,129-140.
[111]
WlTTEN, I. H. 1979. Approximate, non-deterministic modelling of behaviour sequences. Int. J. General Systems 5 (Jan.), 1-12.
[112]
WITTEN, I. H. 1980. Probabilistic behaviour/structure transformations using transitive Moore models. Int. J. General Syst. 6, 3, 129-137.
[113]
WlTTEN, I. H., AND CLEARY, J. 1983. Picture coding and transmission using adaptive modelling of quad trees. In Proceedings of the International Electrical, Electronics Conference 1, Toronto, ON, pp. 222-225.
[114]
WITTEN, I. H., AND CLEARY, J. G. 1988. On the privacy afforded by adaptive text compression. Computers and Security 7, 4 (Aug.), 397-408.
[115]
WITTEN, I. H., SEAL, R., AND CLEARY, J. G. 1987. Arithmetic coding for data compression. Commun. ACM 30, 6 (Jun.), 520-540.
[116]
WOLFF, J. G. 1978. Recoding of natural language for economy of transmission or storage. Comput. J. 21, 1, 42-44.
[117]
YOUNG, D. M. 1985. MacWrite file formats. Wheels for the Mind (Newsletter of the Australian Apple University Consortium), University of Western Australia, Nedlands, WA 6009, Australia, p. 34.
[118]
ZIv, J., AND LEMPEL, A. 1977. A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory IT-23, 3 (May), 337-343.
[119]
ZIv, J., ANO LEMPEL, A. 1978. Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory IT-24, 5 (Sept.), 530-536.

Cited By

View all
  • (2024)LpaqHP: A High-Performance FPGA Accelerator for LPAQ CompressionProceedings of the 53rd International Conference on Parallel Processing10.1145/3673038.3673051(898-907)Online publication date: 12-Aug-2024
  • (2024)Intel Accelerators Ecosystem: An SoC-Oriented Perspective : Industry Product2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)10.1109/ISCA59077.2024.00066(848-862)Online publication date: 29-Jun-2024
  • (2024)Dictionary-Based BPT Compression with Trimodal Encryption for Efficient Fiber-Optic Data Management and SecuritySmart Systems: Innovations in Computing10.1007/978-981-97-3690-4_48(641-658)Online publication date: 30-Sep-2024
  • Show More Cited By

Recommendations

Reviews

Glen G. Langdon

The first part of this survey follows the modeling and coding approach described by Rissanen and Langdon [1], and the second part surveys dictionary approaches, including the Ziv-Lempel approach. The work describes general techniques for compressing data composed of a sequence of characters. The novice will have some difficulty with the ambiguous use of “model” in place of a more specific term. Fixed-context and finite-context models apparently mean the same thing, which I would guess is a shift-register finite state machine (FSM) for a finite history of previous symbols. A classification of concepts in Section 1 (“Context Modeling Techniques”) and Section 2 (“Other Statistical Modeling Techniques”) fails to note that model structure (the context FSM) and model statistics (the probability estimation FSM) are independent. The doubly adaptive file compression (DAFC) reference [2] illustrates the point: both the structure and the statistics are adaptive. DAFC starts with a single context and adaptively grows additional contexts, thus anticipating the basic idea of dynamic Markov compression [3]. The survey refers to a valuable corpus of text files. The concluding section on future research shows superb insight into the field. The set of references is excellent.

Access critical reviews of Computing literature here

Become a reviewer for Computing Reviews.

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Computing Surveys
ACM Computing Surveys  Volume 21, Issue 4
Dec. 1989
107 pages
ISSN:0360-0300
EISSN:1557-7341
DOI:10.1145/76894
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 December 1989
Published in CSUR Volume 21, Issue 4

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)415
  • Downloads (Last 6 weeks)54
Reflects downloads up to 21 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)LpaqHP: A High-Performance FPGA Accelerator for LPAQ CompressionProceedings of the 53rd International Conference on Parallel Processing10.1145/3673038.3673051(898-907)Online publication date: 12-Aug-2024
  • (2024)Intel Accelerators Ecosystem: An SoC-Oriented Perspective : Industry Product2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)10.1109/ISCA59077.2024.00066(848-862)Online publication date: 29-Jun-2024
  • (2024)Dictionary-Based BPT Compression with Trimodal Encryption for Efficient Fiber-Optic Data Management and SecuritySmart Systems: Innovations in Computing10.1007/978-981-97-3690-4_48(641-658)Online publication date: 30-Sep-2024
  • (2023)Modified Huffman based Text Compression Scheme for VLF Communication System2023 First International Conference on Microwave, Antenna and Communication (MAC)10.1109/MAC58191.2023.10177081(1-4)Online publication date: 24-Mar-2023
  • (2023)Characterization of Data Compression in Datacenters2023 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)10.1109/ISPASS57527.2023.00010(1-12)Online publication date: Apr-2023
  • (2022)HybriDC: A Resource-Efficient CPU-FPGA Heterogeneous Acceleration System for Lossless Data CompressionMicromachines10.3390/mi1311202913:11(2029)Online publication date: 19-Nov-2022
  • (2022)A Novel Dictionary-Based Method to Compress Log Files with Different Message Frequency DistributionsApplied Sciences10.3390/app1204204412:4(2044)Online publication date: 16-Feb-2022
  • (2022)Understanding Data Compression in Warehouse-Scale Datacenter Services2022 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)10.1109/ISPASS55109.2022.00028(221-223)Online publication date: May-2022
  • (2022)Effect of stopwords in Indian language IRSādhanā10.1007/s12046-021-01731-z47:1Online publication date: 10-Jan-2022
  • (2021)DZip: improved general-purpose loss less compression based on novel neural network modeling2021 Data Compression Conference (DCC)10.1109/DCC50243.2021.00023(153-162)Online publication date: Mar-2021
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media