Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/764808.764822acmconferencesArticle/Chapter ViewAbstractPublication PagesglsvlsiConference Proceedingsconference-collections
Article

Exploiting multiple functionality for nano-scale reconfigurable systems

Published: 28 April 2003 Publication History

Abstract

It is likely that it will become increasingly difficult to manufacture the complex, heterogeneous logic structures that characterise current reconfigurable logic systems. As a result, these systems may come to be characterised by vast arrays of largely identical devices that are differentiated via post-fabrication configuration - but only if low-overhead configuration can be achieved. Two simulation studies are presented that describe some ideas for achieving low-overhead reconfigurability in systems built from nano-scale components. The first is based on variable-threshold devices built from thin-body double gate transistors while a second, more speculative idea is based on recently identified resonant tunneling behaviour in carbon nanotubes. Various logic functions can be configured via the application of a simple bias voltage. Further, two approaches to the issue of generating the required bias voltages based on RTD devices and chalcogenide films are briefly explored.

References

[1]
Akeyoshi, T., H. Matsuzaki, T. Itoh, T. Waho, J. Osaka, M. Yamamoto, Applications of Resonant-tunneling Diodes to High-speed Digital ICs. in Eleventh International Conference on Indium Phosphide and Related Materials, IPRM 1999, (1999), 405--410.
[2]
Bachtold, A., P. Hadley, T. Nakanishi, C. Dekker, Logic Circuits with Carbon Nanotube Transistors. Science, 294, 2001, 1317--1320.
[3]
Beckett, P., A Fine-Grained Reconfigurable Logic Array Based on Double Gate Transistors. in IEEE International Conference on Field-Programmable Technology, FPT2002, (Hong Kong, 2002).
[4]
Chang, L. Scaling Limits and Design Considerations for Double-Gate MOSFETs, Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, 2001.
[5]
Chen, K.J., Waho, T., Maezawa, K., Yamamoto, M., An Exclusive-OR Logic Circuit Based on Controlled Quenching of Series-Connected Negative Differential Resistance Devices. IEEE Electron Device Letters, 17 (6), 1996, 309--311.
[6]
Collier, N.J., Cleaver, J. R. A., Novel Dual-Gate HEMT Utilising Multiple Split Gates. Microelectronic Engineering, 41-42, 1998, 457--460.
[7]
Collins, P.G., Bando, H. & Zettl, A, Nanoscale Electronic Devices on Carbon Nanotubes. in Fifth Foresight Conference on Molecular Nanotechnology, (1997), Foresight Institute.
[8]
Collins, P.G., Bradley, K., Ishigami, M., Zettl, A., Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes. Science, 287, 2000, 1801--1804.
[9]
Compano, R. (ed.), Technology Roadmap for Nano-electronics. European Commission IST Programme - Future and Emerging Technologies, 2000.
[10]
DeHon, A., Array-Based Architecture for Molecular Electronics. in First Workshop on Non-Silicon Computation (NSC-1), (Cambridge, Mass., 2002).
[11]
Dequesnes, M., Rotkin, S. V., Aluru, N. R., Calculation of Pull-In Voltages for Carbon-Nanotube-Based Nano-electromechanical Switches. Nanotechnology, 13 (February 2002), 2002, 120--131.
[12]
Ding, J.W., X. H. Yan, J. X. Cao, Analytical Relation of Band Gaps to Both Chirality and Diameter of Single-Wall Carbon Nanotubes. Physical Review B (Condensed Matter and Materials Physics), 66 (073401), 2002.
[13]
Endoh, T., Sakuraba, H., Shinmei, K., Masuoka, F., New Three Dimensional (3D) Memory Array Architecture for Future Ultra High Density DRAM. in 22nd International Conference on Microelectronics, (2000), 447--450 vol.442.
[14]
Fossum, J.G., Chong, Y., Simulation-Based Assessment of 50 nm Double-Gate SOI CMOS Performance. in IEEE International SOI Conference, (Stuart, FL, USA, 1998), 107--108.
[15]
Gerousis, C., Goodnick, S.M., Xiaohui Wang, Porod, W., Csurgay, A.I., Toth, G., Lent, C.S., Modeling Nanoelectronic CNN Cells: CMOS, SETs and QCAs. in 2000 IEEE International Symposium on Circuits and Systems, ISCAS 2000, (Geneva., 2000), 274.
[16]
Goldstein, S.C., Electronic Nanotechnology and Reconfigurable Computing. in IEEE Computer Society Workshop on VLSI, (Orlando, Florida, 2001), IEEE, 10--15.
[17]
Goldstein, S.C., M. Budiu, NanoFabrics: Spatial Computing Using Molecular Electronics. in 28th International Symposium on Computer Architecture, (Goteborg, Sweden, 2001), IEEE, 178--189.
[18]
Heinze, S., J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, Ph. Avouris, Carbon Nanotubes as Schottky Barrier Transistors. Physical Review Letters, 89 (106801), 2002.
[19]
Hobart, K.D., P. E. Thompson, S. L. Rommel, T. E. Dillon, P. R. Berger, D. S. Simons, P. H. Chi, "P-on-N" Si Interband Tunnel Diode Grown by Molecular Beam Epitaxy. Journal of Vacuum Science and Technology B, 19, 2001, 290--293.
[20]
Ieong, M., Jones, E.C., Kanarsky, T., Ren, Z., Dokumaci, O., Roy, R.A., Shi, L., Furukawa, T., Taur, Y., Miller, R.J., Wong, H.-S.P., Experimental Evaluation of Carrier Transport and Device Design for Planar Symmetric/ Asymmetric Double-Gate/Ground-Plane CMOSFETs. in Electron Devices Meeting, 2001. IEDM Technical Digest. International, (Washington, DC, 2001), 6.1--6.4.
[21]
Ishibashi, K., Ida, T., Suzuki, M., Tsukagoshi, K., Aoyagi, Y., Quantum Dots in Carbon Nanotubes. Japanese Journal of Applied Physics, 39 (12B), 2000, 7053--7057.
[22]
Jin, N., Paul R. Berger, Sean L. Rommel, Phillip E. Thompson, Karl D. Hobart, A PNP Si Resonant Interband Tunnel Diode with Symmetrical NDR. Electronics Letters, 37, 2001, 1412--1414.
[23]
Kado, Y., The Potential of Ultrathin-Film SOI Devices for Low-Power and High-Speed Applications. IEICE Transactions on Electronics, E80-C (3), 1997, 443--454.
[24]
Khakifirooz, A., Antoniadis, D.A., Effect of Back-Gate Biasing on the Performance and Leakage Control in Deeply Scaled SOI MOSFETs. in IEEE International SOI Conference, (2002), 58--59.
[25]
Lent, C.S., Tougaw, P. D., Porod, W., Bernstein, G. H., Quantum Cellular Automata. Nanotechnology, 4 (1), 1993, 49--57.
[26]
Léonard, F., J. Tersoff, Multiple Functionality in Nanotube Transistors. Physical Review Letters, 88, 2002, 258302.
[27]
Lowrey, T. Ovonic Unified Memory, Ovonyx Pty. Ltd., Troy, Michigan, U.S.A., 2001.
[28]
Maimon, J., E. Spall, R. Quinn, S. Schnur, Chalcogenide-Based Non-Volatile Memory Technology. in IEEE Aero-space Conference, (Big Sky, MT, USA, 2001), 2289--2294.
[29]
Maimon, J., K. Hunt, J. Rodgers, L. Burcin, K. Knowles. Integration and Circuit Demonstration of Chalcogenide Memory Elements with a Radiation Hardened CMOS Technology, Ovonix Corp., 2001.
[30]
Martel, R., T. Schmidt, H. R. Shea, T. Hertel, P. H. Avouris, Single and Multi-wall Nanotube Field-Effect Transistors. Applied Physics Letters, 73 (17), 1998, 2447--2449.
[31]
McEuen, P.L., Fuhrer, M.S., Hongkun Park, Single-Walled Carbon Nanotube Electronics. IEEE Transactions on Nanotechnology, 1 (1), 2002, 78--85.
[32]
McEuen, P.L., Park, J., Bachtold, A., Woodside, M., Fuhrer, M.S., Bockrath, M., Shi, L., Majumda, A., Kim, P., Nanotube Nanoelectronics. in Device Research Conference, (2001), 107--110.
[33]
McFarland, G.W., CMOS Technology Scaling and its Impact on Cache Delay, PhD thesis, Electrical Engineering,Stanford University, 1997.
[34]
Nakayama, K., K. Kojima, F. Hayakawa, Y. Imai, A. Kitagawa, M. Suzuki, Submicron Nonvolatile Memory Cell Based on Reversible Phase Transition in Chalcogenide Glasses. Japanese Journal Applied Physics, 39 (Part 1, No. 11), 2000, 6157--6161.
[35]
Niemier, M.T., Arun F. Rodrigues, Peter M. Kogge, A Potentially Implementable FPGA for Quantum Dot Cellular Automata. in First Workshop on Non-Silicon Computation, NSC-1, (Cambridge, Mass., 2002).
[36]
Niemier, M.T., P. M. Kogge, Logic in Wire: Using Quantum Dots to Implement a Microprocessor. in 6th IEEE International Conference on Electronics, Circuits and Systems, ICECS '99, (Pafos, Cyprus, 1999), 1211--1215.
[37]
Parihar, V., R. Singh, K. F. Poole, Silicon Nanoelectronics: 100nm Barriers and Potential Solutions. in IEEE/SEMI Advanced Semiconductor Manufacturing Conference, (1998), IEEE, 427--121.
[38]
Ren, Z., R. Venugopal, S. Datta, M. Lundstrom, D. Jovanovic, J. Fossum. Idealized SOI-Si Double Gate NMOSFET Device, Rev. 12-8-00, Purdue University, Motorola, University of Florida, 2000.
[39]
Ren, Z., Ramesh Venugopal, Supriyo Datta, Mark Lundstrom, Examination of Design and Manufacturing Issues in a 10 nm Double Gate MOSFET using Nonequilibrium Green's Function Simulation. 2001.
[40]
Richter, R., H. Boeve, L. Bär, J. Bangert, G. Rupp, G. Reiss, J. Wecker, Field Programmable Spin-Logic Realized with Tunnelling-Magnetoresistance Devices. Solid-State Electronics, 46 (5), 2002, 639--643.
[41]
Rueckes, T., K. Kim, E. Joselevich, G. Y. Tseng, C-L. Cheung, C. M. Lieber, Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing. Science, 289, 2000, 94--97.
[42]
Schulz, T., W. Rösner, E. Landgraf, L. Risch, U. Langmann, Planar and Vertical Double Gate Concepts. Solid-State Electronics, 46 (7), 2002, 985--989.
[43]
Seabaugh, A.C., Y.-C. Kao, H.-T. Yuan, Nine-state Resonant Tunneling Diode Memory. IEEE Electron Device Letters, 13 (9), 1992, 479--481.
[44]
Stock, J., Malindretos, J., Indlekofer, K.M., Pottgens, M., Forster, A., Luth, H., A Vertical Resonant Tunneling Transistor for Application in Digital Logic Circuits. IEEE Transactions on Electron Devices, 48 (6), 2001, 1028--1032.
[45]
Suzuki, M.I., K., Ida, T., Aoyagi, Y., Quantum Dot Formation in Single-Wall Carbon Nanotubes. Japanese Journal Applied Physics, 40, Part 1 (3B), 2001, 1915--1917.
[46]
Tucker, J.R., Schottky Barrier MOSFETS for Silicon Nanoelectronics. in Advanced Workshop on Frontiers in Electronics, WOFE '97, (1997), 97--100.
[47]
van der Wagt, J.P.A., Tunnelling-Based SRAM. Nanotechnology, 10 (2), 1999, 174--186.
[48]
Waho, T., Chen, K.J., Yamamoto, M., Resonant-tunneling Diode and HEMT Logic Circuits with Multiple Thresholds and Multilevel Output. IEEE Journal of Solid-State Circuits, 33 (2), 1998, 268--274.
[49]
Wei, S.-J., Lin, H.C., Multivalued SRAM Cell Using Resonant Tunneling Diodes. IEEE Journal of Solid-State Circuits, 27 (2), 1992, 212--216.
[50]
Wind, S.J., Appenzeller, J., Martel, R., Derycke, V., Avouris, Ph., Vertical Scaling of Carbon Nanotube Field-Effect Transistors using Top Gate Electrodes. Applied Physics Letters, 80 (20), 2002, 3817--3819.

Cited By

View all
  • (2022)Fabrication of Conductive Fabrics Based on SWCNTs, MWCNTs and Graphene and Their Applications: A ReviewPolymers10.3390/polym1424537614:24(5376)Online publication date: 8-Dec-2022
  • (2011)Improved reconfigurability and noise margins in threshold logic gates via back-gate biasing in DG-MOSFETsAnalog Integrated Circuits and Signal Processing10.1007/s10470-010-9587-068:1(101-109)Online publication date: 1-Jul-2011
  • (2010)On Tunable Compact Analog Circuits with Nanoscale DG-MOSFETs2010 53rd IEEE International Midwest Symposium on Circuits and Systems10.1109/MWSCAS.2010.5548647(189-192)Online publication date: Aug-2010
  • Show More Cited By

Index Terms

  1. Exploiting multiple functionality for nano-scale reconfigurable systems

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      GLSVLSI '03: Proceedings of the 13th ACM Great Lakes symposium on VLSI
      April 2003
      320 pages
      ISBN:1581136773
      DOI:10.1145/764808
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 28 April 2003

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. RTD
      2. carbon nanotube
      3. chalcogenide
      4. double gate transistors
      5. multi-valued RAM
      6. multiple functionality
      7. nanoelectronics
      8. nanotechnology
      9. reconfigurable systems
      10. resonant tunneling

      Qualifiers

      • Article

      Conference

      GLSVLSI03
      Sponsor:
      GLSVLSI03: Great Lakes Symposium on VLSI 2003
      April 28 - 29, 2003
      D. C., Washington, USA

      Acceptance Rates

      Overall Acceptance Rate 312 of 1,156 submissions, 27%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)3
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 25 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2022)Fabrication of Conductive Fabrics Based on SWCNTs, MWCNTs and Graphene and Their Applications: A ReviewPolymers10.3390/polym1424537614:24(5376)Online publication date: 8-Dec-2022
      • (2011)Improved reconfigurability and noise margins in threshold logic gates via back-gate biasing in DG-MOSFETsAnalog Integrated Circuits and Signal Processing10.1007/s10470-010-9587-068:1(101-109)Online publication date: 1-Jul-2011
      • (2010)On Tunable Compact Analog Circuits with Nanoscale DG-MOSFETs2010 53rd IEEE International Midwest Symposium on Circuits and Systems10.1109/MWSCAS.2010.5548647(189-192)Online publication date: Aug-2010
      • (2010)Widely tunable low-power high-linearity current-mode integrator built using DG-MOSFETsAnalog Integrated Circuits and Signal Processing10.1007/s10470-009-9334-662:2(215-222)Online publication date: 1-Feb-2010
      • (2009)Highly reconfigurable and error tolerant threshold logic gates based on nanoscale DG-MOSFETs2009 International Semiconductor Device Research Symposium10.1109/ISDRS.2009.5378246(1-2)Online publication date: Dec-2009
      • (2005)Bio Molecular EngineProceedings of the 7th annual workshop on Genetic and evolutionary computation10.1145/1102256.1102314(249-256)Online publication date: 25-Jun-2005
      • (2005)Why Area Might Reduce Power in Nanoscale CMOS2005 IEEE International Symposium on Circuits and Systems10.1109/ISCAS.2005.1465091(2329-2332)Online publication date: 2005
      • (2004)Defect and Fault Tolerance of Reconfigurable Molecular Computing12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines10.1109/FCCM.2004.26(176-185)Online publication date: 2004

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media