Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3632409.3632840acmconferencesArticle/Chapter ViewAbstractPublication PagesslipConference Proceedingsconference-collections
research-article
Open access

Invited: Acceleration on Physical Design: Machine Learning-based Routability Optimization

Published: 15 February 2024 Publication History

Abstract

Design rule violation (DRV) is one of the significant challenges in designing integrated circuits. To successfully manufacture a chip, it is crucial to create a DRV clean layout. However, as technology nodes shrink and the cell density of the design increases, design rules have become increasingly difficult to meet, making the routing more complex. In addition, the conventional design flow has a problem in that it primarily determines design parameters and tool options, while evaluating routability at the end of the design flow. Furthermore, due to complex design rules, even global routers are not accurate enough, so routability can be assessed after actual routing, leading to significantly extended design turn-around times. In this paper, we introduce a framework that leverages machine learning techniques to overcome the limitations of the conventional design flows. We also present the challenges that arise during the construction of the framework, along with related research. Furthermore, we discuss issues that remain unresolved.

References

[1]
A. B. Kahng, L. Wang and B. Xu, "TritonRoute: An Initial Detailed Router for Advanced VLSI Technologies", Proc. ICCAD, 2018.
[2]
H. Li, G. Chen, B. Jiang et al., "Dr. CU 2.0: A Scalable Detailed Routing Framework with Correct-By-Construction Design Rule Satisfaction", Proc. ICCAD, 2019.
[3]
A. B. Kahng, "Machine Learning Applications in Physical Design: Recent Results and Directions", Proc. ISPD, 2018.
[4]
International Technology Roadmap for Semiconductors. http://www.itrs2.net/itrs-reports.html
[5]
W. J. Chan, Y. Du, A. B. Kahng et al., "BEOL Stack-Aware Routability Prediction from Placement Using Data Mining Techniques", Proc. ICCD, 2016.
[6]
I. Elfadel, D. Boning and X. Li, "Machine Learning in VLSI Computer-Aided Design", Springer International Publishing, 2019.
[7]
H. Geng, T. Chen, Y. Ma et al., "PTPT: Physical Design Tool Parameter Tuning via Multi-Objective Bayesian Optimization", IEEE TCAD, 42(1) 2023, pp. 178--189.
[8]
D. Amuru, H. V. Vudumulda, P. K. Cherupally et al., "AI/ML Algorithms and Applications in VLSI Design and Technology", Springer International Publishing, Proc. ISPD, 2023.
[9]
J. Jung, A. B. Kahng, S. Kim et al., "METRICS2.1 and Flow Tuning in the IEEE CEDA Robust Design Flow and OpenROAD", Proc. ICCAD, 2021.
[10]
J. L. Olson, "Synthesis for advanced nodes: An industry perspective", Proc. ISPD, 2012.
[11]
C.-K. Cheng, A. B. Kahng, H. Kim et al., "PROBE2.0: A System- atic Framework for Routability Assessment From Technology to Design in Advanced Nodes", IEEE TCAD, 41(5) 2022, pp. 1495--1508.
[12]
T.-B. Chan, A. B. Kahng and M. Woo, "Revisiting Inherent Noise Floors for Interconnect Prediction", Proc. SLIP, 2020.
[13]
A. B. Kahng and S. Mantik, "Measurement of Inherent Noise in EDA Tools", Proc. ISQED, 2002.
[14]
K. Min, S. Kwon, S.-Y. Lee et al., "ClusterNet Routing Congestion Prediction and Optimization using Netlist Clustering and Graph Neural Networks", Proc. ICCAD, 2023.
[15]
A. B. Kahng, S. Kang, S. Kim et al., "Enhanced Power Delivery Pathfinding for Emerging 3-D Integration Technology", IEEE TVLSI, 29(4) 2021, pp. 591--604.
[16]
S. Park, D. Kim, S. Kwon et al., "Routability Prediction and Optimization Using Explainable AI", Proc. ICCAD, 2023.
[17]
S. I. Nikolenko, "Synthetic Data for Deep Learning", San Francisco, CA, USA: Springer, 2021.
[18]
J. Tremblay, T. To, B. Sundaralingam et al., "Deep Object Pose Estimation for Semantic Robotic Grasping of Household Objects", arXiv, 2018.
[19]
V. Hamolia and V. Melnyk, "A Survey of Machine Learning Methods and Applications in Electronic Design Automation", Proc. ACIT, 2021.
[20]
D. Kim, S.-Y. Lee, K. Min et al., "Construction of Realistic Place-and-route Benchmarks for Machine Learning Applications", IEEE TCAD, 42(6) 2023, pp. 2030--2042.
[21]
J. Darnauer and W. W. Dai, "A Method for Generation Random Circuits and Its Application to Routability Measurement", Proc. FPGA, 1996.
[22]
M. D. Hutton, J. Rose, J. P. Grossman et al., "Characterization and parameterized generation of synthetic combinational benchmark circuits", IEEE TCAD, 17(10) 1998, pp. 985--996.
[23]
M. D. Hutton, J. S. Rose and D. G. Corneil, "Automatic Generation of Synthetic Sequential Benchmark Circuits", IEEE TCAD, 21(8) 2002, pp. 928--940.
[24]
A. B. Kahng and S. Kang, "Construction of Realistic Gate Sizing Benchmarks With Known Optimal Solutions", Proc. ISPD, 2012.
[25]
K. Liu, B. Tan, R. Karri et al., "Poisoning the (Data) Well in ML-Based CAD: A Case Study of Hiding Lithographic Hotspots", Proc. DATE, 2020.
[26]
D. A. van Dyk and X.-L. Meng, "The Art of Data Augmentation", JCGS, 10(1) 2001, pp. 1--50.
[27]
S. Idreos, O. Papaemmanouil, and S. Chaudhuri, "Overview of Data Exploration Techniques" Proc. SIGMOD, 2015.
[28]
L. Maaten and G. Hinton, "Visualizing Data Using t-SNE", JMLR, 9(86) 2008, pp. 2579--2605.
[29]
K. Pearson, "Note on Regression and Inheritance in the Case of Two Parents", Proc. R. Soc. Lond., 1895.
[30]
P. Spindler and F. M. Johannes, "Fast and Accurate Routing Demand Estimation for Efficient Routability-driven Placement", Proc. DATE, 2007.
[31]
X. Yang, R. Kastner and M. Sarrafzadeh, "Congestion Estimation during Top-Down Placement", IEEE TCAD, 21(1) 2002, pp. 72--80.
[32]
D. Kim, H. Kwon, S.-Y. Lee et al., "Machine Learning Framework for Early Routability Prediction with Artificial Netlist Generator", Proc. DATE, 2021.
[33]
Z. Xie, Y.-H. Huang, G.-Q. Fang et al., "RouteNet: Routability prediction for Mixed-Size Designs Using Convolutional Neural Network", Proc. ICCAD, 2018.
[34]
A. F. Tabrizi, N. K. Darav, L. Rakai et al., "Eh?Predictor: A Deep Learning Framework to Identify Detailed Routing Short Violations From a Placed Netlist", IEEE TCAD, 39(6) 2020, pp. 1177--1190.
[35]
R. Liang, H. Xiang, D. Pandey et al., "DRC Hotspot Prediction at Sub-10nm Process Nodes Using Customized Convolutional Network", Proc. ISPD, 2020.
[36]
R. Liang, H. Xiang, J. Jung et al., "A Stochastic Approach to Handle Non-Determinism in Deep Learning-Based Design Rule Violation Predictions", Proc. ICCAD, 2022.
[37]
K. Baek, H. Park, S. Kim et al., "Pin Accessibility and Routing Congestion Aware DRC Hotspot Prediction using Graph Neural Network and U-Net", Proc. ICCAD, 2022.
[38]
D. Kim, J. Lee and S. Kang, "Routability Prediction using Deep Hierarchical Classification and Regression", Proc. DATE, 2023.
[39]
W.-T. J. Chan, P.-H. Ho, A. B. Kahng et al., "Routability Optimization for Industrial Designs at sub-14nm Process Nodes Using Machine learning", Proc. ISPD, 2017.
[40]
T.-C. Yu, S.-Y. Fang, H.-S. Chiu et al., "Pin Accessibility Prediction and Optimization With Deep-Learning-Based Pin Pattern Recognition", IEEE TCAD, 40(11) 2021, pp. 2345--2356.
[41]
J. Chen, J. Kuang, G. Zhao et al., "PROS 2.0: A Plug-In for Routability Optimization and Routed Wirelength Estimation Using Deep Learning", IEEE TCAD, 42(1) 2023, pp. 164--177.
[42]
S. M. Lundberg and S.-I. Lee, "A Unified Approach to Interpreting Model Predictions", Proc. NeurIPS, 2017.
[43]
L. S. Shapley, "A Value for n-person Games," Contributions to the Theory of Games, vol. 2, no. 28, pp. 307--317, 1953.
[44]
A. Shrikumar, P. Greenside and A. Kundaje, "Learning Important Features Through Propagating Activation Differences", Proc. ICML, 2017.
[45]
R. R. Selvaraju, M. Cogswell, A. Das et al., "Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization", Proc. ICCV, 2017.
[46]
M. D. Zeiler and R. Fergus. "Visualizing and understanding convolutional networks", Proc. ECCV, 2014.
[47]
M. Sundararajan, A. Taly and Q. Yan. "Axiomatic Attribution for Deep Networks", Proc. ICML, 2017.
[48]
Cadence Innovus User Guide, https://www.cadence.com
[49]
Synopsys IC Compiler II User Guide, http://www.synopsys.com

Index Terms

  1. Invited: Acceleration on Physical Design: Machine Learning-based Routability Optimization
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SLIP '23: Proceedings of the 2023 ACM International Workshop on System-Level Interconnect Pathfinding
    November 2023
    51 pages
    ISBN:9798400704741
    DOI:10.1145/3632409
    This work is licensed under a Creative Commons Attribution International 4.0 License.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 15 February 2024

    Check for updates

    Author Tags

    1. routability prediction
    2. routability optimization
    3. DRV prediction
    4. ML/AI EDA

    Qualifiers

    • Research-article

    Conference

    SLIP '23
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 6 of 8 submissions, 75%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 143
      Total Downloads
    • Downloads (Last 12 months)143
    • Downloads (Last 6 weeks)30
    Reflects downloads up to 18 Nov 2024

    Other Metrics

    Citations

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media