Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3630050.3630178acmconferencesArticle/Chapter ViewAbstractPublication PagesconextConference Proceedingsconference-collections
research-article
Open access

Explainable Mobile Traffic Classification: the Case of Incremental Learning

Published: 05 December 2023 Publication History

Abstract

The surge in mobile network usage has contributed to the adoption of Deep Learning (DL) techniques for Traffic Classification (TC) to ensure efficient network management. However, DL-based classifiers still face challenges due to the frequent release of new apps (making them outdated) and the lack of interpretability (limiting their adoption). In this regard, Class Incremental Learning and eXplainable Artificial Intelligence have emerged as fundamental methodological tools. This work aims at reducing the gap between the DL models' performance and their interpretability in the TC domain. In this study, we examine from different perspectives the differences between classifiers when trained from scratch and incrementally. Using Deep SHAP, we derive global explanations to emphasize disparities in input importance. We comprehensively analyze base classifiers' behavior to understand the starting point of the incremental process and examine updated models to uncover architectures' features resulting from the incremental training.
The analysis is based on MIRAGE19, an open dataset focused on mobile app traffic.

References

[1]
Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, Valerio Persico, and Antonio Pescapé. 2019. MIRAGE: Mobile-app Traffic Capture and Ground-truth Creation. In 2019 4th International Conference on Computing, Communications and Security (ICCCS). 1--8. https://doi.org/10.1109/CCCS.2019.8888137
[2]
Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Antonio Pescapè. 2019. MIMETIC: Mobile encrypted traffic classification using multimodal deep learning. Elsevier Computer Networks 165 (2019), 106944. https://doi.org/10.1016/j.comnet.2019.106944
[3]
Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Antonio Pescapé. 2019. Mobile encrypted traffic classification using deep learning: Experimental evaluation, lessons learned, and challenges. IEEE Transactions on Network and Service Management 16, 2 (2019), 445--458. https://doi.org/10.1109/TNSM.2019.2899085
[4]
Cedric Beliard, Alessandro Finamore, and Dario Rossi. 2020. Opening the deep Pandora box: Explainable traffic classification. In IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 1292--1293. https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162704
[5]
Giampaolo Bovenzi, Alfredo Nascita, Lixuan Yang, Alessandro Finamore, Giuseppe Aceto, Domenico Ciuonzo, Antonio Pescapé, and Dario Rossi. 2023. Benchmarking Class Incremental Learning in Deep Learning Traffic Classification. IEEE Transactions on Network and Service Management (2023), 1--1. https://doi.org/10.1109/TNSM.2023.3287430
[6]
Giampaolo Bovenzi, Lixuan Yang, Alessandro Finamore, Giuseppe Aceto, Domenico Ciuonzo, Antonio Pescape, and Dario Rossi. 2021. A first look at class incremental learning in deep learning mobile traffic classification. arXiv preprint arXiv:2107.04464 (2021). https://doi.org/10.48550/arXiv.2107.04464
[7]
Yige Chen, Tianning Zang, Yongzheng Zhang, Yuan Zhou, Linshu Ouyang, and Peng Yang. 2021. Incremental Learning for Mobile Encrypted Traffic Classification. In IEEE International Conference on Communications (ICC). IEEE, 1--6. https://doi.org/10.1109/ICC42927.2021.9500619
[8]
Ericsson. 2023. Ericsson Mobility Report. https://www.ericsson.com/49dd9d/assets/local/reports-papers/mobility-report/documents/2023/ericssonmobility-report-june-2023.pdf.
[9]
Kevin Fauvel, Fuxing Chen, and Dario Rossi. 2023. A Lightweight, Efficient and Explainable-by-Design Convolutional Neural Network for Internet Traffic Classification. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (Long Beach, CA, USA) (KDD '23). Association for Computing Machinery, 4013--4023. https://doi.org/10.1145/3580305.3599762
[10]
Luis Garcia, Genevieve Bartlett, Srivatsan Ravi, Harun Ibrahim, Wes Hardaker, and Erik Kline. 2022. Explaining Deep Learning Models for Per-packet Encrypted Network Traffic Classification. In IEEE International Symposium on Measurements & Networking (M&N). IEEE, 1--6. https://doi.org/10.1109/MN55117.2022.9887744
[11]
Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. 2013. An empirical investigation of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211 (2013). https://doi.org/10.48550/arXiv.1312.6211
[12]
Dan Hendrycks and Kevin Gimpel. 2016. Abaseline for detecting misclassified and out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136 (2016). https://doi.org/10.48550/arXiv.1610.02136
[13]
Steven Jorgensen, John Holodnak, Jensen Dempsey, Karla de Souza, Ananditha Raghunath, Vernon Rivet, Noah DeMoes, Andrés Alejos, and Allan Wollaber. 2023. Extensible Machine Learning for Encrypted Network Traffic Application Labeling via Uncertainty Quantification. IEEE Transactions on Artificial Intelligence (2023), 1--15. https://doi.org/10.1109/TAI.2023.3244168
[14]
Minsoo Kang, Jaeyoo Park, and Bohyung Han. 2022. Class-incremental learning by knowledge distillation with adaptive feature consolidation. In Proc. of the IEEE/CVF conference on computer vision and pattern recognition. IEEE, 16071--16080. https://doi.org/10.1109/CVPR52688.2022.01560
[15]
Scott M Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting Model Predictions. In Advances in Neural Information Processing Systems, I. Guyon, U. Von Luxburg, S. Bengio, H.Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran Associates, Inc., 4765--4774. https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
[16]
Xiuli Ma, Wenbin Zhu, Jieling Wei, Yanliang Jin, Dongsheng Gu, and Rui Wang. 2023. EETC: An extended encrypted traffic classification algorithm based on variant ResNet network. Elsevier Computers & Security 128 (2023), 103175. https://doi.org/10.1016/j.cose.2023.103175
[17]
Marc Masana, Xialei Liu, Bartłomiej Twardowski, Mikel Menta, Andrew D. Bagdanov, and Joost van de Weijer. 2023. Class-Incremental Learning: Survey and Performance Evaluation on Image Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 5 (2023), 5513--5533. https://doi.org/10.1109/TPAMI.2022.3213473
[18]
Alfredo Nascita, Antonio Montieri, Giuseppe Aceto, Domenico Ciuonzo, Valerio Persico, and Antonio Pescapé. 2021. XAI meets mobile traffic classification: Understanding and improving multimodal deep learning architectures. IEEE Transactions on Network and Service Management 18, 4 (2021), 4225--4246. https://doi.org/10.1109/TNSM.2021.3098157
[19]
Alfredo Nascita, Antonio Montieri, Giuseppe Aceto, Domenico Ciuonzo, Valerio Persico, and Antonio Pescapé. 2023. Improving Performance, Reliability, and Feasibility in Multimodal Multitask Traffic Classification with XAI. IEEE Transactions on Network and Service Management 20, 2 (2023), 1267--1289. https://doi.org/10.1109/TNSM.2023.3246794
[20]
Dawid Rymarczyk, Joost van de Weijer, Bartosz Zieliński, and Bartlomiej Twardowski. 2023. ICICLE: Interpretable Class Incremental Continual Learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision. IEEE, 1887--1898. https://doi.org/10.48550/arXiv.2303.07811
[21]
Lloyd S Shapley. 1953. A value for n-person games. Contributions to the Theory of Games 2, 28 (1953), 307--317.
[22]
Zhuoxue Song, Ziming Zhao, Fan Zhang, Gang Xiong, Guang Cheng, Xinjie Zhao, Shize Guo, and Binbin Chen. 2023. I2 RNN: An Incremental and Interpretable Recurrent Neural Network for Encrypted Traffic Classification. IEEE Transactions on Dependable and Secure Computing (2023), 1--14. https://doi.org/10.1109/TDSC.2023.3245411
[23]
Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing high-dimensional data using t-SNE. J Mach Learn Res 9, 2579--2605 (2008), 9.
[24]
Xin Wang, Shuhui Chen, and Jinshu Su. 2020. Real network traffic collection and deep learning for mobile app identification. Wireless Communications and Mobile Computing 2020 (2020), 1--14. https://doi.org/10.1155/2020/4707909
[25]
Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu. 2019. Large scale incremental learning. In Proc. IEEE/CVF CVPR. 374--382. https://doi.org/10.1109/CVPR.2019.00046
[26]
Zheng Wu, Yu ning Dong, Xiaohui Qiu, and Jiong Jin. 2022. Online multimedia traffic classification from the QoS perspective using deep learning. Computer Networks 204 (2022), 108716. https://doi.org/10.1016/j.comnet.2021.108716
[27]
Wenbin Zhu, Xiuli Ma, Yanliang Jin, and Rui Wang. 2023. ILETC: Incremental learning for encrypted traffic classification using generative replay and exemplar. Elsevier Computer Networks 224 (2023), 109602. https://doi.org/10.1016/j.comnet.2023.109602

Cited By

View all
  • (2024)Traffic Prediction- and Explainable Artificial Intelligence-Based Dynamic Routing in Software-Defined Elastic Optical Networks2024 IFIP Networking Conference (IFIP Networking)10.23919/IFIPNetworking62109.2024.10619798(750-756)Online publication date: 3-Jun-2024
  • (2024)An In-Depth Analysis of Advanced Time Series Forecasting Models for the Open RANIEEE INFOCOM 2024 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)10.1109/INFOCOMWKSHPS61880.2024.10620742(1-6)Online publication date: 20-May-2024

Index Terms

  1. Explainable Mobile Traffic Classification: the Case of Incremental Learning

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SAFE '23: Proceedings of the 2023 on Explainable and Safety Bounded, Fidelitous, Machine Learning for Networking
    December 2023
    37 pages
    ISBN:9798400704499
    DOI:10.1145/3630050
    This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike International 4.0 License.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 05 December 2023

    Check for updates

    Author Tags

    1. class incremental learning
    2. continual learning
    3. eXplainable artificial intelligence
    4. traffic classification

    Qualifiers

    • Research-article

    Conference

    CoNEXT 2023
    Sponsor:

    Upcoming Conference

    CoNEXT '24

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)217
    • Downloads (Last 6 weeks)25
    Reflects downloads up to 19 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Traffic Prediction- and Explainable Artificial Intelligence-Based Dynamic Routing in Software-Defined Elastic Optical Networks2024 IFIP Networking Conference (IFIP Networking)10.23919/IFIPNetworking62109.2024.10619798(750-756)Online publication date: 3-Jun-2024
    • (2024)An In-Depth Analysis of Advanced Time Series Forecasting Models for the Open RANIEEE INFOCOM 2024 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)10.1109/INFOCOMWKSHPS61880.2024.10620742(1-6)Online publication date: 20-May-2024

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media