Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3625687.3625788acmconferencesArticle/Chapter ViewAbstractPublication PagessensysConference Proceedingsconference-collections
research-article
Open access

NeuroRadar: A Neuromorphic Radar Sensor for Low-Power IoT Systems

Published: 26 April 2024 Publication History

Abstract

Radar sensors have recently been explored in the industrial and consumer Internet of Things (IoT). However, such applications often require self-sustainable or untethered operations, which are at odds with the high power consumption of radar. This paper proposes NeuroRadar, a neuromorphic radar sensor, to achieve low-power wireless sensing. NeuroRadar jointly optimizes the analog hardware and the computation model, in order to mimic the highly efficient biological sensing and neural processing system. NeuroRadar features a highly simplified radar front end, which eliminates the power-hungry components in conventional radars. It directly "encodes" ambient motion into spiking signals, which can be processed using spiking neural networks running on energy-efficient neuromorphic computing platforms. We have prototyped NeuroRadar and evaluated its performance in two use cases: gesture sensing and localization. Our experiments demonstrate that NeuroRadar can achieve high sensing accuracy, at orders of magnitude lower power consumption compared with traditional radar.

References

[1]
Adler, R. A study of locking phenomena in oscillators. Proceedings of the IRE 34, 6 (1946), 351--357.
[2]
Ahmad, Z., Chen, M., and Bao, S.-D. Beam pattern analysis of frequency diverse array radar: a review. EURASIP Journal on Wireless Communications and Networking 2021, 1 (2021), 1--33.
[3]
Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P., Imam, N., Nakamura, Y., Datta, P., Nam, G.-J., et al. Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE transactions on computer-aided design of integrated circuits and systems 34, 10 (2015), 1537--1557.
[4]
Amir, A., Taba, B., Berg, D., Melano, T., McKinstry, J., Di Nolfo, C., Nayak, T., Andreopoulos, A., Garreau, G., Mendoza, M., et al. A low power, fully event-based gesture recognition system. In Proceedings of the IEEE conference on computer vision and pattern recognition (2017).
[5]
Arsalan, M., Chmurski, M., Santra, A., El-Masry, M., Weigel, R., and Issakov, V. Resource efficient gesture sensing based on fmcw radar using spiking neural networks. In 2021 IEEE MTT-S International Microwave Symposium (IMS) (2021), IEEE, pp. 78--81.
[6]
Arsalan, M., Santra, A., and Issakov, V. Power-efficient gesture sensing for edge devices: mimicking fourier transforms with spiking neural networks. Applied Intelligence (2022), 1--16.
[7]
Arsalan, M., Santra, A., and Issakov, V. Radarsnn: A resource efficient gesture sensing system based on mm-wave radar. IEEE Transactions on Microwave Theory and Techniques 70, 4 (2022), 2451--2461.
[8]
Banerjee, D., Rani, S., George, A. M., Chowdhury, A., Dey, S., Mukherjee, A., Chakravarty, T., and Pal, A. Application of spiking neural networks for action recognition from radar data. In 2020 International Joint Conference on Neural Networks (IJCNN) (2020), IEEE, pp. 1--10.
[9]
Birkoben, T., Winterfeld, H., Fichtner, S., Petraru, A., and Kohlstedt, H. A spiking and adapting tactile sensor for neuromorphic applications. Scientific reports 10, 1 (2020), 1--11.
[10]
Blouw, P., Choo, X., Hunsberger, E., and Eliasmith, C. Benchmarking keyword spotting efficiency on neuromorphic hardware. In Proceedings of the 7th annual neuro-inspired computational elements workshop (2019), pp. 1--8.
[11]
Blouw, P., and Eliasmith, C. Event-driven signal processing with neuromorphic computing systems. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2020), IEEE, pp. 8534--8538.
[12]
Brandli, C., Berner, R., Yang, M., Liu, S.-C., and Delbruck, T. A 240× 180 130 db 3 μs latency global shutter spatiotemporal vision sensor. IEEE Journal of Solid-State Circuits 49, 10 (2014), 2333--2341.
[13]
Burelo, K., Sharifshazileh, M., Krayenbühl, N., Ramantani, G., Indiveri, G., and Sarnthein, J. A spiking neural network (snn) for detecting high frequency oscillations (hfos) in the intraoperative ecog. Scientific Reports 11, 1 (2021), 6719.
[14]
Chang, H.-C. Stability analysis of self-injection-locked oscillators. IEEE Transactions on Microwave Theory and Techniques 51, 9 (2003).
[15]
Chen, D., Li, Y., Xu, D., Harris, J. G., and Principe, J. C. Asynchronous biphasic pulse signal coding and its cmos realization. In 2006 IEEE International Symposium on Circuits and Systems (ISCAS) (2006), IEEE, pp. 4--pp.
[16]
Chen, Z., Zheng, T., and Luo, J. Octopus: a practical and versatile wideband mimo sensing platform. In Proceedings of the 27th Annual International Conference on Mobile Computing and Networking (2021), pp. 601--614.
[17]
Cooper, K. B., Monje, R. R., Dengler, R. J., Cochrane, C. J., Alonso-Delpino, M., Tang, A., El Bouayadi, T. O., and Pradhan, O. A compact, low power consumption, and highly sensitive 95 ghz doppler radar. IEEE Sensors Journal 20, 11 (2020), 5865--5875.
[18]
Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., Dimou, G., Joshi, P., Imam, N., Jain, S., et al. Loihi: A neuromorphic manycore processor with on-chip learning. Ieee Micro 38, 1 (2018), 82--99.
[19]
Degnan, B., Marr, B., and Hasler, J. Assessing trends in performance per watt for signal processing applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 24, 1 (2015).
[20]
Dhar, D., van Zeijl, P. T., Milosevic, D., Gao, H., and van Roermund, A. H. Modeling and analysis of the effects of pll phase noise on fmcw radar performance. In 2017 IEEE International Symposium on Circuits and Systems (ISCAS) (2017), IEEE, pp. 1--4.
[21]
Digilent. Cmod A7. https://digilent.com/reference/programmable-logic/cmod-a7/start.
[22]
Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. The spinnaker project. Proceedings of the IEEE 102, 5 (2014), 652--665.
[23]
Gao, C., Li, Y., and Zhang, X. LiveTag: Sensing Human-Object Interaction through Passive Chipless WiFi Tags. In USENIX Symposium on Networked Systems Design and Implementation (NSDI) (2018).
[24]
Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. Neuronal dynamics: From single neurons to networks and models of cognition. Cambridge University Press, 2014.
[25]
Giordani, M., Berto, M., Di Lauro, M., Bortolotti, C. A., Zoli, M., and Biscarini, F. Specific dopamine sensing based on short-term plasticity behavior of a whole organic artificial synapse. ACS sensors 2, 12 (2017), 1756--1760.
[26]
Gong, J., Zhang, X., Lin, K., Ren, J., Zhang, Y., and Qiu, W. Rf vital sign sensing under free body movement. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 5, 3 (2021).
[27]
Hamza, K. H., and Nirmal, D. A review of gan hemt broadband power amplifiers. AEU-International Journal of Electronics and Communications 116 (2020), 153040.
[28]
He, Y., Nie, S., Liu, R., Jiang, S., Shi, Y., and Wan, Q. Spatiotemporal information processing emulated by multiterminal neuro-transistor networks. Advanced Materials 31, 21 (2019), 1900903.
[29]
Henning, M., Ramos-Traslosheros, G., Gür, B., and Silies, M. Populations of local direction–selective cells encode global motion patterns generated by self-motion. Science Advances 8, 3 (2022).
[30]
Hsu, C.-Y., Chuang, C.-Y., Wang, F.-K., Horng, T.-S., and Hwang, L.-T. Detection of vital signs for multiple subjects by using self-injection-locked radar and mutually injection-locked beam scanning array. In 2017 IEEE MTT-S International Microwave Symposium (IMS) (2017), IEEE, pp. 991--994.
[31]
Huang, J., Vogginger, B., Gerhards, P., Kreutz, F., Kelber, F., Scholz, D., Knobloch, K., and Mayr, C. G. Real-time radar gesture classification with spiking neural network on spinnaker 2 prototype. In 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS) (2022), IEEE, pp. 362--365.
[32]
Infineon Technologies. BAT63. https://www.infineon.com/cms/en/product/rf/rf-diode/rf-mixer-and-detector-schottky-diode/bat63-02v/.
[33]
Infineon Technologies. BFP620. https://www.infineon.com/cms/en/product/rf/rf-transistor/low-noise-rf-transistors/bfp620/.
[34]
Johanson Technology. Wirewound inductors. https://www.johansontechnology.com/wirewound-inductors.
[35]
Kalyanaraman, A., Soltanaghaei, E., and Whitehouse, K. Doorpler: A radar-based system for real-time, low power zone occupancy sensing. In 2019 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS) (2019), IEEE, pp. 42--53.
[36]
Kellogg, B., Talla, V., and Gollakota, S. Bringing gesture recognition to all devices. In 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14) (2014), pp. 303--316.
[37]
Kreutz, F., Gerhards, P., Vogginger, B., Knobloch, K., and Mayr, C. G. Applied spiking neural networks for radar-based gesture recognition. In 2021 7th International Conference on Event-Based Control, Communication, and Signal Processing (EBCCSP) (2021), IEEE, pp. 1--4.
[38]
Kulpa, K., Rzewuski, S., Gajo, Z., and Malanowski, M. Concept of multistatic passive radar based on wireless packet communication systems. In Proceedings of 2011 IEEE CIE International Conference on Radar (2011), vol. 1, IEEE, pp. 149--152.
[39]
Lichtsteiner, P., Posch, C., and Delbruck, T. A 128× 128 120 db 15 μs latency asynchronous temporal contrast vision sensor. IEEE Journal of Solid-State Circuits 43, 2 (2008), 566--576.
[40]
Lien, J., Gillian, N., Karagozler, M. E., Amihood, P., Schwesig, C., Olson, E., Raja, H., and Poupyrev, I. Soli: Ubiquitous gesture sensing with millimeter wave radar. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1--19.
[41]
Liu, N., Liu, Y., Hu, J., He, Y., Zhang, X., and Wan, Q. Ph-dependent plasticity regulation in proton/electron hybrid oxide-based synaptic transistors. Applied Surface Science 481 (2019), 1412--1417.
[42]
Liu, N., Zhu, L. Q., Feng, P., Wan, C. J., Liu, Y. H., Shi, Y., and Wan, Q. Flexible sensory platform based on oxide-based neuromorphic transistors. Scientific reports 5, 1 (2015), 1--9.
[43]
Liu, S.-C., Delbruck, T., Indiveri, G., Whatley, A., and Douglas, R. Event-based neuromorphic systems. John Wiley & Sons, 2014.
[44]
López-Randulfe, J., Duswald, T., Bing, Z., and Knoll, A. Spiking neural network for fourier transform and object detection for automotive radar. Frontiers in Neurorobotics 15 (2021), 69.
[45]
Lyon, R. F., and Mead, C. An analog electronic cochlea. IEEE Transactions on Acoustics, Speech, and Signal Processing 36, 7 (1988), 1119--1134.
[46]
Maass, W. Networks of spiking neurons: the third generation of neural network models. Neural networks 10, 9 (1997), 1659--1671.
[47]
Mahmood, M., and Mir, H. Fda transmit beampattern synthesis using piece-wise trigonometric frequency offset. IET Radar, Sonar & Navigation 13, 7 (2019), 1149--1153.
[48]
Marki, F., and Marki, C. Mixer basics primer. Marki Microwave (2010), 116.
[49]
McKeown, M. Fft implementation on the tms320vc5505, tms320c5505, and tms320c5515 dsps. Texas Instruments Incorporated, White Paper SPRABB6B (2010).
[50]
Mercier, P. P., Bandyopadhyay, S., Lysaght, A. C., Stankovic, K. M., and Chandrakasan, A. P. A sub-nw 2.4 ghz transmitter for low data-rate sensing applications. IEEE journal of solid-state circuits 49, 7 (2014), 1463--1474.
[51]
Mini-Circuits. Advantages of Cascading Reflectionless Filters. https://www.minicircuits.com/appdoc/AN75-008.html.
[52]
Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. A scalable multicore architecture with heterogeneous memory structures for dynamic neuromorphic asynchronous processors (dynaps). IEEE transactions on biomedical circuits and systems 12, 1 (2017), 106--122.
[53]
Nguyen, V.-H., and Pyun, J.-Y. Location detection and tracking of moving targets by a 2d ir-uwb radar system. sensors 15, 3 (2015), 6740--6762.
[54]
Nolan, J., Qian, K., and Zhang, X. Ros: passive smart surface for roadside-to-vehicle communication. In Proceedings of the ACM SIGCOMM Conference (2021).
[55]
NTE Electronics. 2N3904. https://www.nteinc.com/specs/original/2N3904.pdf.
[56]
NTE Electronics. 2N3906. https://www.nteinc.com/specs/original/2N3905_06.pdf.
[57]
Park, B.-K., Boric-Lubecke, O., and Lubecke, V. M. Arctangent demodulation with dc offset compensation in quadrature doppler radar receiver systems. IEEE transactions on Microwave theory and techniques 55, 5 (2007), 1073--1079.
[58]
Park, H.-L., Lee, Y., Kim, N., Seo, D.-G., Go, G.-T., and Lee, T.-W. Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics. Advanced Materials 32, 15 (2020), 1903558.
[59]
Qian, K., He, Z., and Zhang, X. 3d point cloud generation with millimeter-wave radar. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (2020).
[60]
Rasmussen, D. Nengodl: Combining deep learning and neuromorphic modelling methods. Neuroinformatics 17, 4 (2019), 611--628.
[61]
Razavi, B. A study of injection locking and pulling in oscillators. IEEE journal of solid-state circuits 39, 9 (2004), 1415--1424.
[62]
Razavi, B. Mutual injection pulling between oscillators. In IEEE Custom Integrated Circuits Conference 2006 (2006), IEEE, pp. 675--678.
[63]
Razavi, B., and Behzad, R. RF microelectronics, vol. 2. Prentice hall New York, 2012.
[64]
RFMi. SF2098E. https://www.rfmi.co/home/products/SAW_BAW.
[65]
Rongala, U. B., Mazzoni, A., and Oddo, C. M. Neuromorphic artificial touch for categorization of naturalistic textures. IEEE transactions on neural networks and learning systems 28, 4 (2015), 819--829.
[66]
Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. Conversion of continuous-valued deep networks to efficient event-driven networks for image classification. Frontiers in neuroscience 11 (2017), 682.
[67]
Safa, A., Bourdoux, A., Ocket, I., Catthoor, F., and Gielen, G. G. On the use of spiking neural networks for ultralow-power radar gesture recognition. IEEE Microwave and Wireless Components Letters 32, 3 (2021), 222--225.
[68]
Safa, A., Corradi, F., Keuninckx, L., Ocket, I., Bourdoux, A., Catthoor, F., and Gielen, G. G. Improving the accuracy of spiking neural networks for radar gesture recognition through preprocessing. IEEE Transactions on Neural Networks and Learning Systems (2021).
[69]
Scherer, M., Magno, M., Erb, J., Mayer, P., Eggimann, M., and Benini, L. Tinyradarnn: Combining spatial and temporal convolutional neural networks for embedded gesture recognition with short range radars. IEEE Internet of Things Journal 8, 13 (2021), 10336--10346.
[70]
Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. Going deeper in spiking neural networks: Vgg and residual architectures, 2019.
[71]
Shaaban, A., Furtner, W., Weigel, R., and Lurz, F. Spiking neural networks for gesture recognition using time domain radar data. In 2022 19th European Radar Conference (EuRAD) (2022), IEEE, pp. 33--36.
[72]
Sharifshazileh, M., Burelo, K., Sarnthein, J., and Indiveri, G. An electronic neuromorphic system for real-time detection of high frequency oscillations (hfo) in intracranial eeg. Nature communications 12, 1 (2021), 1--14.
[73]
Siddiq, K., Watson, R. J., Pennock, S. R., Avery, P., Poulton, R., and Dakin-Norris, B. Phase noise analysis in fmcw radar systems. In 2015 European Microwave Conference (EuMC) (2015), IEEE, pp. 1523--1526.
[74]
Song, Z., Tong, Y., Zhao, X., Ren, H., Tang, Q., and Liu, Y. A flexible conformable artificial organ-damage memory system towards hazardous gas leakage based on a single organic transistor. Materials Horizons 6, 4 (2019), 717--726.
[75]
Stereolabs. ZED-2i. https://www.stereolabs.com/zed-2i/.
[76]
Stewart, T. C. A technical overview of the neural engineering framework. University of Waterloo 110 (2012).
[77]
Stuijt, J., Sifalakis, M., Yousefzadeh, A., and Corradi, F. μbrain: An event-driven and fully synthesizable architecture for spiking neural networks. Frontiers in neuroscience (2021), 538.
[78]
Sun, Y., Fei, T., Li, X., Warnecke, A., Warsitz, E., and Pohl, N. Real-time radar-based gesture detection and recognition built in an edge-computing platform. IEEE Sensors Journal 20, 18 (2020), 10706--10716.
[79]
Suroso, D. J., Gautam, D., and Sunarno, S. Spatial aliasing effects on beamforming performance in large-spacing antenna array. Communications in Science and Technology 4, 1 (2019), 1--6.
[80]
Tang, D., Rodrigues, D. V., Brown, M. C., and Li, C. Dual null detection points removal and time-domain sensitivity analysis of a self-injection-locked radar for small-amplitude motion sensing. IEEE Transactions on Microwave Theory and Techniques 70, 9 (2022), 4263--4272.
[81]
Texas Instruments. TLV521. https://www.ti.com/product/TLV521.
[82]
Texas Instruments. TPS7A02. https://www.ti.com/product/TPS7A02.
[83]
Vogginger, B., Kreutz, F., López-Randulfe, J., Liu, C., Dietrich, R., Gonzalez, H. A., Scholz, D., Reeb, N., Auge, D., Hille, J., et al. Automotive radar processing with spiking neural networks: Concepts and challenges. Frontiers in neuroscience 16 (2022).
[84]
Wan, C., Chen, G., Fu, Y., Wang, M., Matsuhisa, N., Pan, S., Pan, L., Yang, H., Wan, Q., Zhu, L., et al. An artificial sensory neuron with tactile perceptual learning. Advanced Materials 30, 30 (2018), 1801291.
[85]
Wan, Q., Li, Y., Li, C., and Pal, R. Gesture recognition for smart home applications using portable radar sensors. In 2014 36th annual international conference of the IEEE engineering in medicine and biology society (2014), IEEE, pp. 6414--6417.
[86]
Wang, B., Tasselli, G., Botteron, C., and Farine, P.-A. Building blocks for a 24 ghz phased-array front-end in cmos technology for smart streetlights. Progress In Electromagnetics Research B 61, ARTICLE (2014), 99--119.
[87]
Wang, F.-K., Chou, Y.-R., Chiu, Y.-C., and Horng, T.-S. Chest-worn health monitor based on a bistatic self-injection-locked radar. IEEE Transactions on Biomedical Engineering 62, 12 (2015), 2931--2940.
[88]
Wang, F.-K., Horng, T.-S., Peng, K.-C., Jau, J.-K., Li, J.-Y., and Chen, C.-C. Single-antenna doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation. IEEE Transactions on Microwave Theory and Techniques 59, 12 (2011), 3577--3587.
[89]
Wang, F.-K., Horng, T.-S., Peng, K.-C., Jau, J.-K., Li, J.-Y., and Chen, C.-C. Single-antenna doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation. IEEE Transactions on Microwave Theory and Techniques 59, 12 (2011), 3577--3587.
[90]
Wang, F.-K., Li, C.-J., Hsiao, C.-H., Horng, T.-S., Lin, J., Peng, K.-C., Jau, J.-K., Li, J.-Y., and Chen, C.-C. A novel vital-sign sensor based on a self-injection-locked oscillator. IEEE Transactions on Microwave Theory and Techniques 58, 12 (2010), 4112--4120.
[91]
Whelan, C. S., Kolias, N. J., Brierley, S., MacDonald, C., and Bernstein, S. Gan technology for radars. In 2012 CS MANTECH Conference, Boston, MA April (2012).
[92]
Yang, M., Chien, C.-H., Delbruck, T., and Liu, S.-C. A 0.5 v 55μw 64×2 channel binaural silicon cochlea for event-driven stereo-audio sensing. IEEE Journal of Solid-State Circuits 51, 11 (2016), 2554--2569.
[93]
Yole. Status of the Radar Industry: Players, Applications and Technology Trends 2020.
[94]
Zeng, M., He, Y., Zhang, C., and Wan, Q. Neuromorphic devices for bionic sensing and perception. Frontiers in Neuroscience (2021), 805.

Cited By

View all
  • (2024)CommRad: Context-Aware Sensing-Driven Millimeter-Wave NetworksProceedings of the 22nd ACM Conference on Embedded Networked Sensor Systems10.1145/3666025.3699363(633-646)Online publication date: 4-Nov-2024
  • (2024)Enhancing mmWave Radar Sensing Using a Phased-MIMO ArchitectureProceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services10.1145/3643832.3661865(56-69)Online publication date: 3-Jun-2024
  • (2024)REHSense: Towards Battery-Free Wireless Sensing via Radio Frequency Energy HarvestingProceedings of the Twenty-fifth International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing10.1145/3641512.3686388(211-220)Online publication date: 14-Oct-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SenSys '23: Proceedings of the 21st ACM Conference on Embedded Networked Sensor Systems
November 2023
574 pages
ISBN:9798400704147
DOI:10.1145/3625687
This work is licensed under a Creative Commons Attribution International 4.0 License.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 26 April 2024

Check for updates

Author Tags

  1. neuromorphic computing
  2. neuromorphic sensors
  3. spiking neural networks
  4. low-power sensing
  5. gesture recognition
  6. motion tracking

Qualifiers

  • Research-article

Funding Sources

Conference

Acceptance Rates

Overall Acceptance Rate 174 of 867 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)767
  • Downloads (Last 6 weeks)204
Reflects downloads up to 18 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)CommRad: Context-Aware Sensing-Driven Millimeter-Wave NetworksProceedings of the 22nd ACM Conference on Embedded Networked Sensor Systems10.1145/3666025.3699363(633-646)Online publication date: 4-Nov-2024
  • (2024)Enhancing mmWave Radar Sensing Using a Phased-MIMO ArchitectureProceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services10.1145/3643832.3661865(56-69)Online publication date: 3-Jun-2024
  • (2024)REHSense: Towards Battery-Free Wireless Sensing via Radio Frequency Energy HarvestingProceedings of the Twenty-fifth International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing10.1145/3641512.3686388(211-220)Online publication date: 14-Oct-2024
  • (2024)Device-Level Energy Efficient Strategies in Machine Type Communications: Power, Processing, Sensing, and RF PerspectivesIEEE Open Journal of the Communications Society10.1109/OJCOMS.2024.34439205(5054-5087)Online publication date: 2024
  • (2024)The Impact of Automotive Radar Configuration on Power Consumption: The Case of TI AWR18432024 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)10.1109/MetroAutomotive61329.2024.10615722(29-34)Online publication date: 26-Jun-2024

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media