Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3625135.3625136acmotherconferencesArticle/Chapter ViewAbstractPublication PagesdlfmConference Proceedingsconference-collections
research-article
Open access

The ‘Measure Map’: an inter-operable standard for aligning symbolic music

Published: 10 November 2023 Publication History

Abstract

Aligning versions of the same source material has been a persistent challenge in the field of digital libraries for musicology, and a barrier to progress. The growing number of publicly accessible symbolic datasets (of scores, analyses, and more) now increasingly cover multiple versions of the same works. As creators/curators/representatives of many such datasets and encoding standards, we came together in this project to coordinate platform-neutral interoperabilility for combining and comparing different sources, reliably and automatically. Here, we outline the main challenges and propose solutions centred on the ‘measure map’: a lightweight format for representing symbolic bar information alone. We offer new code for producing this representation from various formats, diagnosing differences, and even solving for those differences by modifying sources in-place. While we cannot solve for every possible discrepancy, we do provide corpus-scale demonstration; and while we focus on symbolic data, we consider the measure map also a useful basis for aligning audio, manuscripts and any source for which bar-relative location data provides a useful point of reference.

References

[1]
Jenine Brown, Daphne Tan, and Michelle Lin. [n. d.]. An Analytical Dataset of Approaches to V in Mozart. 16, 2 ([n. d.]), 341–350. https://doi.org/10.18061/emr.v16i2.8511
[2]
Donald Byrd and Eric Isaacson. 2003. A music representation requirement specification for academia. Computer Music Journal 27, 4 (2003), 43–57.
[3]
Carlos Eduardo Cancino-Chacón, Silvan David Peter, Emmanouil Karystinaios, Francesco Foscarin, Maarten Grachten, and Gerhard Widmer. 2022. Partitura: A Python Package for Symbolic Music Processing. In Proceedings of the Music Encoding Conference (MEC2022). Halifax, Canada.
[4]
Barry Cooper. 2017. Rehearsal Letters, Rhythmic Modes and Structural Issues in Beethoven’s Grosse Fuge. Nineteenth-Century Music Review 14, 2 (2017), 177–193. https://doi.org/10.1017/S1479409816000069 Publisher: Cambridge University Press.
[5]
Louis Couturier, Louis Bigo, and Florence Levé. 2022. A Dataset of Texture Annotations in Mozart Piano Sonatas. In International Society for Music Information Retrieval Conference (ISMIR 2022).
[6]
William H. Cummings. 1904. Bar-Lines. The Musical Times 45, 739 (1904), 574–575.
[7]
Michael Scott Cuthbert. 2010. Music21: A Toolkit for Computer-Aided Musicology and Symbolic Music Data. In 11th International Society for Music Information Retrieval Conference, J. Stephen Downie and Remco C Veltkamp (Eds.). Utrecht, Netherlands, 637–642.
[8]
Jacob DeGroot-Maggetti, Timothy R De Reuse, Laurent Feisthauer, Samuel Howes, Yaolong Ju, Suzuka Kokubu, Sylvain Margot, Néstor Nápoles López, and Finn Upham. 2020. Data Quality Matters: Iterative Corrections on a Corpus of Mendelssohn String Quartets and Implications for MIR Analysis. In Proceedings of the 21st International Society for Music Information Retrieval Conference. Zenodo. https://doi.org/10.5281/ZENODO.4245459
[9]
Francesco Foscarin, Emmanouil Karystinaios, Silvan David Peter, Carlos Cancino-Chacón, Maarten Grachten, and Gerhard Widmer. 2021. The Match File Format: Encoding Alignments between Scores and Performances. In Proceedings of the 22nd International Society for Music Information Retrieval Conference, ISMIR.
[10]
Francesco Foscarin, Philippe Rigaux, and Virginie Thion. 2021. Data Quality Assessment in Digital Score Libraries: The GioQoso Project. International Journal on Digital Libraries 22, 2 (June 2021), 159–173. https://doi.org/10.1007/s00799-021-00299-7
[11]
Wolf Frobenius. 2012. Tactus. In Handwörterbuch der musikalischen Terminologie: Im Auftrag der Akademie der Wissenschaften und der Literatur, Mainz, Hans Heinrich Eggebrecht, Albrecht Riethmüller, and Markus Bandur (Eds.). Franz Steiner Verlag, Stuttgart.
[12]
Louis Garczynski, Mathieu Giraud, Emmanuel Leguy, and Philippe Rigaux. 2022. Modeling and Editing Cross-Modal Synchronization on a Label Web Canvas. In Music Encoding Conference (MEC 2022). Halifax, Canada. https://hal.science/hal-03583179
[13]
Michael Good. 2001. MusicXML for Notation and Analysis. In The Virtual Score: Representation, Retrieval, Restoration, Walter B. Hewlett and Eleanor Selfridge-Field (Eds.). Computing in Musicology, Vol. 12. The MIT Press, 113–124. https://doi.org/10.7551/mitpress/2058.001.0001
[14]
Mark Gotham, Gianluca Micchi, Néstor Nápoles-López, and Malcolm Sailor. 2023. When in Rome: a meta-corpus of functional harmony. Transactions of the International Society for Music Information Retrieval (forthcoming 2023).
[15]
Mark Robert Haigh Gotham and Peter Jonas. 2022. The OpenScore Lieder Corpus. In Music Encoding Conference Proceedings 2021, Stefan Münnich and David Rizo (Eds.). Humanities Commons, 131–136. https://doi.org/10.17613/1my2-dm23
[16]
Elaine Gould. 2011. Behind Bars: The Definitive Guide to Music Notation. Faber Music, London.
[17]
Andrew Hankinson, Perry Roland, and Ichiro Fujinaga. 2011. The Music Encoding Initiative as a Document-Encoding Framework. In Proceedings of the 12th International Society for Music Information Retrieval Conference, ISMIR, Anssi Klapuri and Colby Leider (Eds.). University of Miami, 293–298.
[18]
Johannes Hentschel, Andrew McLeod, Yannis Rammos, and Martin Rohrmeier. 2023. Introducing DiMCAT for Processing and Analyzing Notated Music on a Very Large Scale. In Proceedings of the 24th International Society for Music Information Retrieval Conference.
[19]
Johannes Hentschel, Markus Neuwirth, and Martin Rohrmeier. 2021. The Annotated Mozart Sonatas: Score, Harmony, and Cadence. Transactions of the International Society for Music Information Retrieval 4, 1 (2021), 67–80. https://doi.org/10.5334/tismir.63
[20]
Johannes Hentschel and Martin Rohrmeier. [n. d.]. Ms3: A Parser for MuseScore Files, Serving as Data Factory for Annotated Music Corpora. 8, 88 ([n. d.]), 5195. https://doi.org/10.21105/joss.05195
[21]
David Huron. 1988. Error Categories, Detection, and Reduction in a Musical Database. Computers and the Humanities 22, 4 (1988), 253–264. https://doi.org/10.1007/BF00118601
[22]
David Huron. 1994. The Humdrum Toolkit: Reference Manual. Center for Computer Assisted Research in the Humanities, Menlo Park, CA.
[23]
David Huron. 1998. Music Research Using Humdrum. A User’s Guide.
[24]
David Huron. 1999. The New Empiricism: Systematic Musicology in a Postmodern Age. Music and Mind: Foundations of Cognitive Musicology 3. The 1999 Ernest Bloch Lecture, University of California, Berkely.
[25]
David Lewis, Elisabete Shibata, Mark Saccomano, Lisa Rosendahl, Johannes Kepper, Andrew Hankinson, Christine Siegert, and Kevin Page. 2022. A Model for Annotating Musical Versions and Arrangements across Multiple Documents and Media. In Proceedings of the 9th International Conference on Digital Libraries for Musicology(DLfM ’22). Association for Computing Machinery, New York, NY, USA, 10–18. https://doi.org/10.1145/3543882.3543891
[26]
Edward E. Lowinsky. 1960. Early Scores in Manuscript. Journal of the American Musicological Society 13, 1/3 (1960), 126–173. https://doi.org/10.2307/830252 jstor:830252
[27]
Han-Wen Nienhuys and Jan Nieuwenhuizen. 2003. LilyPond, a System for Automated Music Engraving. (2003).
[28]
Polina Proutskova, Daniel Wolff, György Fazekas, Klaus Frieler, Frank Höger, Olga Velichkina, Gabriel Solis, Tillman Weyde, Martin Pfleiderer, Hèlène Camille Crayencour, Geoffroy Peeters, and Simon Dixon. 2022. The Jazz Ontology: A Semantic Model and Large-Scale RDF Repositories for Jazz. Journal of Web Semantics 74 (Oct. 2022), 100735. https://doi.org/10.1016/j.websem.2022.100735
[29]
Laurent Pugin, Rodolfo Zitellini, and Perry Roland. 2014. Verovio: A Library for Engraving MEI Music Notation into SVG. In Pugin, Laurent; Zitellini, Rodolfo; Roland, Perry (2014). Verovio: A Library for Engraving MEI Music Notation into SVG. In: 15th International Society for Music Information Retrieval Conference (ISMIR 2014). Taipei. 27-31 Oktober 2014.Taipei, 107–112.
[30]
Perry Roland. 2002. The Music Encoding Initiative (MEI). In Proceedings of the International Conference on Musical Applications Using XML. 55–59.
[31]
Eleanor Selfridge-Field. 1997. Introduction. Describing Musical Information. In Beyond MIDI: The Handbook of Musical Codes, Eleanor Selfridge-Field (Ed.). MIT Press, Cambridge, Mass, 3–38.
[32]
Daniel Shanahan, John Ashley Burgoyne, and Ian Quinn (Eds.). 2022. The Oxford Handbook of Music and Corpus Studies (first ed.). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780190945442.001.0001
[33]
Leland Smith. 1997. SCORE. In Beyond MIDI: The Handbook of Musical Codes, Eleanor Selfridge-Field (Ed.). MIT Press, Cambridge, Mass, 252–280.
[34]
Kurt Stone. 1980. Music Notation in the Twentieth Century: A Practical Guidebook (1st ed ed.). W. W. Norton, New York.
[35]
Dmitri Tymoczko, Mark Gotham, Michael Scott Cuthbert, and Christopher Ariza. 2019. The RomanText Format: A Flexible and Standard Method for Representing Roman Numeral Analyses. In Proceedings of the 20th International Society for Music Information Retrieval Conference, ISMIR 2019, Delft, The Netherlands, November 4-8, 2019, Arthur Flexer, Geoffroy Peeters, Julián Urbano, and Anja Volk (Eds.). 123–129. http://archives.ismir.net/ismir2019/paper/000012.pdf
[36]
David M. Weigl, Werner Goebl, Alex Hofmann, Tim Crawford, Federico Zubani, Cynthia C. S. Liem, and Alastair Porter. 2020. Read/Write Digital Libraries for Musicology. In 7th International Conference on Digital Libraries for Musicology(DLfM 2020). Association for Computing Machinery, New York, NY, USA, 48–52. https://doi.org/10.1145/3424911.3425519
[37]
Benjamin B. M. Yu. 1984. Mental Study in Piano Teaching. 33, 6 (1984), 12–14. https://www.proquest.com/docview/1294820902/citation/CD9AE0C5FFF843B7PQ/1

Cited By

View all

Index Terms

  1. The ‘Measure Map’: an inter-operable standard for aligning symbolic music
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    DLfM '23: Proceedings of the 10th International Conference on Digital Libraries for Musicology
    November 2023
    139 pages
    ISBN:9798400708336
    DOI:10.1145/3625135
    This work is licensed under a Creative Commons Attribution-ShareAlike International 4.0 License.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 10 November 2023

    Check for updates

    Author Tags

    1. Alignment
    2. Corpus study
    3. Digital Music Library
    4. Interoperability
    5. Music Information Retrieval
    6. Musical Analyses
    7. Musical Scores

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    DLfM 2023

    Acceptance Rates

    Overall Acceptance Rate 27 of 48 submissions, 56%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 406
      Total Downloads
    • Downloads (Last 12 months)406
    • Downloads (Last 6 weeks)58
    Reflects downloads up to 25 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media