Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

A Cubic Algorithm for Computing the Hermite Normal Form of a Nonsingular Integer Matrix

Published: 14 October 2023 Publication History

Abstract

A Las Vegas randomized algorithm is given to compute the Hermite normal form of a nonsingular integer matrix A of dimension n. The algorithm uses quadratic integer multiplication and cubic matrix multiplication and has running time bounded by O(n3 (log n + log ||A||)2(log n)2) bit operations, where ||A||= max ij |Aij| denotes the largest entry of A in absolute value. A variant of the algorithm that uses pseudo-linear integer multiplication is given that has running time (n3 log ||A||)1+o(1) bit operations, where the exponent “+ o(1)” captures additional factors c1 (log n)c2 (loglog||A||)c3 for positive real constants c1,c2,c3.

References

[1]
J. Alman and V. V. Williams. 2021. A refined laser method and faster matrix multiplication. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA’21), 522–539. DOI:
[2]
E. Bach and J. Shallit. 1996. Algorithmic Number Theory, volume 1: Efficient Algorithms. MIT Press.
[3]
B. Beckermann and G. Labahn. 1994. A uniform approach for the fast computation of matrix–type Padé approximants. SIAM J. Matrix Anal. Appl. 15, 3 (1994), 804–823.
[4]
B. Beckermann, G. Labahn, and G. Villard. 1999. Shifted normal forms of polynomial matrices. In Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC’99), S. Dooley (Ed.). ACM Press, New York, 189–196.
[5]
S. Birmpilis, G. Labahn, and A. Storjohann. 2020. A Las Vegas algorithm for computing the Smith form of a nonsingular integer matrix. In Proceedings International Symposium on Symbolic and Algebraic Computation: ISSAC’20, New York, NY, USA, ACM, 38–45.
[6]
S. Birmpilis, G. Labahn, and A. Storjohann. 2023. A fast algorithm for computing the Smith normal form with multipliers for a nonsingular integer matrix. J. Symbol. Comput. 116 (2023), 146–182.
[7]
T.-W. J. Chou and G. E. Collins. 1982. Algorithms for the solutions of systems of linear diophantine equations. SIAM J. Comput. 11 (1982), 687–708.
[8]
G. E. Collins. 1968. Computing Time Analyses for Some Arithmetic and Algebraic Algorithms. Technical Report 36, University of Wisconsin—Madison.
[9]
P. D. Domich, R. Kannan, and L. E. Trotter, Jr. 1987. Hermite normal form computation using modulo determinant arithmetic. Math. Operat. Res. 12, 1 (1987), 50–59.
[10]
J. L. Hafner and K. S. McCurley. 1989. A rigorous subexponential algorithm for computation of class groups. J. Am. Math. Soc., 2 (1989), 837–850.
[11]
D. Harvey and J. van der Hoeven. 2021. Integer multiplication in time \({O}(n \log n)\). Ann. Math. 193 (2021), 563–617.
[12]
C. Hermite. 1851. Sur l’introduction des variables continues dans la théorie des nombres. J. Reine Angew. Math. 41 (1851), 191–216.
[13]
J. A. Howell. 1986. Spans in the module \((\mathbb {Z}_m)^s\). Lin. Multilin. Algebr. 19 (1986), 67—77.
[14]
E. Hubert and G. Labahn. 2013. Scaling invariants and symmetry reduction of dynamical systems. Found. Comput. Math. 13, 4 (2013), 479–516.
[15]
C. S. Iliopoulos. 1989. Worst-case complexity bounds on algorithms for computing the canonical structure of finite abelian groups and the Hermite and Smith normal forms of an integer matrix. SIAM J. Comput. 18, 4 (1989), 658–669.
[16]
R. Kannan and A. Bachem. 1979. Polynomial algorithms for computing the Smith and Hermite normal forms of and integer matrix. SIAM J. Comput. 8, 4 (1979), 499–507.
[17]
G. Labahn, V. Neiger, and W. Zhou. 2017. Fast, deterministic computation of the Hermite normal form and determinant of a polynomial matrix. J. Complex 42 (2017), 44–71.
[18]
R. Liu and Y. Pan. 2019. Computing Hermite normal form faster via solving system of linear equations. In Proceedings International Symposium on Symbolic and Algebraic Computation (ISSAC’19). ACM, New York, NY, 283–290.
[19]
D. Micciancio and B. Warinschi. 2001. A linear space algorithm for computing the Hermite normal form. In Proceedings International Symposium on Symbolic and Algebraic Computation (ISSAC’01). B. Mourrain (Ed.), ACM Press, New York, NY, 231—236.
[20]
C. Pauderis and A. Storjohann. 2013. Computing the invariant structure of integer matrices: Fast algorithms into practice. In Proceedings International Symposium on Symbolic and Algebraic Computation (ISSAC’13). ACM, New York, NY, 307–314.
[21]
C. Pernet and W. Stein. 2010. Fast computation of Hermite normal forms of integer matrices. J. Number Theory 130, 7 (2010), 1675–1683.
[22]
A. Schrijver. 1998. Theory of Linear and Integer Programming. John Wiley & Sons.
[23]
A. Storjohann. 2000. Algorithms for Matrix Canonical Forms. PhD thesis, Swiss Federal Institute of Technology, ETH–Zurich.
[24]
A. Storjohann. 2015. On the complexity of inverting integer and polynomial matrices. Comput. Complex. 24, 4 (2015), 777—821.
[25]
A. Storjohann and G. Labahn. 1996. Asymptotically fast computation of Hermite normal forms of integer matrices. In Proceedings International Symposium on Symbolic and Algebraic Computation (ISSAC’96), Y. N. Lakshman (Ed.). ACM Press, New York, NY, 259–266.
[26]
A. Storjohann and T. Mulders. 1998. Fast algorithms for linear algebra modulo N. In Proceedings of the European Symposium on Algorithms (ESA’98), G. Bilardi, G. F. Italiano, A. Pietracaprina, and G. Pucci (Eds.), LNCS 1461, Springer Verlag, Berlin, 139–150.
[27]
W. Zhou and G. Labahn. 2012. Efficient algorithms for order basis computation. J. Symbol. Comput. 47, 7 (2012), 793–819.
[28]
W. Zhou and G. Labahn. 2013. Computing column bases of polynomial matrices. In Proceedings International Symposium on Symbolic and Algebraic Computation (ISSAC’13). ACM Press, Boston, MA, 379–388.
[29]
W. Zhou, G. Labahn, and A. Storjohann. 2012. Computing minimal nullspace basis. In Proceedings International Symposium on Symbolic and Algebraic Computation (ISSAC’12), J. van der Hoeven and M. van Hoeij (Eds.), ACM Press, New York, NY, 366–373.

Cited By

View all
  • (2024)Embedding Integer Lattices as Ideals into Polynomial RingsProceedings of the 2024 International Symposium on Symbolic and Algebraic Computation10.1145/3666000.3669688(170-179)Online publication date: 16-Jul-2024

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Algorithms
ACM Transactions on Algorithms  Volume 19, Issue 4
October 2023
255 pages
ISSN:1549-6325
EISSN:1549-6333
DOI:10.1145/3614237
  • Editor:
  • Edith Cohen
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 14 October 2023
Online AM: 31 August 2023
Accepted: 26 August 2023
Revised: 16 August 2023
Received: 23 September 2022
Published in TALG Volume 19, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Hermite normal form
  2. Howell normal form
  3. Smith massager
  4. integer matrix

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)70
  • Downloads (Last 6 weeks)2
Reflects downloads up to 19 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Embedding Integer Lattices as Ideals into Polynomial RingsProceedings of the 2024 International Symposium on Symbolic and Algebraic Computation10.1145/3666000.3669688(170-179)Online publication date: 16-Jul-2024

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media