Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3610978.3640598acmconferencesArticle/Chapter ViewAbstractPublication PageshriConference Proceedingsconference-collections
short-paper
Open access

Design Principles for Building Robust Human-Robot Interaction Machine Learning Models

Published: 11 March 2024 Publication History

Abstract

Effective collaboration between humans and robots hinges on the robot's ability to comprehend its human teammate. This collaboration demands the development of machine learning models that bridge the gap between human physiological signals and their mental states. However, the challenge lies in developing generalizable machine learning models using data collected in controlled experimental conditions. This manuscript proposes a set of principles for designing human subject evaluations, emphasizing the crucial balance between experimental control and ecological validity while also balancing fundamental machine learning trade-offs.

Supplemental Material

MP4 File
Supplemental video

References

[1]
P. Baskaran and J. A. Adams. Multi-dimensional task recognition for human-robot teaming: literature review. Frontiers in Robotics and AI, 10, 2023.
[2]
S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan. A theory of learning from different domains. Machine Learning, 79:151--175, 2010.
[3]
C. L. Bethel and R. R. Murphy. Review of human studies methods in HRI and recommendations. International Journal of Social Robotics, 2(4):347--359, 2010.
[4]
J. Bhagat Smith, P. Baskaran, and J. A. Adams. Decomposed physical workload estimation for human-robot teams. In International Conference on Human-Machine Systems, pages 1--6. IEEE, 2022.
[5]
J. Bhagat Smith, S. A. Toribio, P. Baskaran, and J. A. Adams. Uncertainty-aware visual workload estimation for human-robot teams. In Conference on Cognitive and Computational Aspects of Situation Management, pages 1--8, 2023.
[6]
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16:321--357, 2002.
[7]
X.-W. Chen and X. Lin. Big data deep learning: challenges and perspectives. IEEE Access, 2:514--525, 2014.
[8]
S. Dowiasch, P. Wolf, and F. Bremmer. Quantitative comparison of a mobile and a stationary video-based eye-tracker. Behavior research methods, 52:667--680, 2020.
[9]
C. Elkan. The foundations of cost-sensitive learning. In International Joint Conference on Artificial Intelligence, volume 17, pages 973--978. Lawrence Erlbaum Associates Ltd, 2001.
[10]
M. Esterman, B. J. Tamber-Rosenau, Y.-C. Chiu, and S. Yantis. Avoiding non-independence in fMRI data analysis: Leave one subject out. Neuroimage, 50(2):572--576, 2010.
[11]
M. R. Fraune, I. Leite, N. Karatas, A. Amirova, A. Legeleux, A. Sandygulova, A. Neerincx, G. Dilip Tikas, H. Gunes, M. Mohan, N. I. Abbasi, S. Shenoy, B. Scassellati, E. J. de Visser, and T. Komatsu. Lessons learned about designing and conducting studies from HRI experts. Frontiers in Robotics and AI, 8:772141, 2021.
[12]
M. Ginesi, D. Meli, A. Roberti, N. Sansonetto, and P. Fiorini. Autonomous task planning and situation awareness in robotic surgery. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3144--3150. IEEE, 2020.
[13]
G. Hoffman and X. Zhao. A primer for conducting experiments in human--robot interaction. ACM Transactions on Human-Robot Interaction, 10(1), 2020.
[14]
G. A. Holleman, I. T. C. Hooge, C. Kemner, and R. S. Hessels. The "real-world approach' and its problems: A critique of the term ecological validity. Frontiers in Psychology, 11:721, 2020.
[15]
Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436--444, 2015.
[16]
A. Luque, A. Carrasco, A. Martín, and A. de Las Heras. The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognition, 91:216--231, 2019.
[17]
G. Matthews, J. De Winter, and P. A. Hancock. What do subjective workload scales really measure? operational and representational solutions to divergence of workload measures. Theoretical Issues in Ergonomics Science, 21(4):369--396, 2020.
[18]
L. Mingyue Ma, T. Fong, M. J. Micire, Y. K. Kim, and K. Feigh. Human-robot teaming: Concepts and components for design. In Conference on Field and Service Robotics, pages 649--663. Springer, 2018.
[19]
K. Murphy. Probabilistic Machine Learning: Advanced Topics. MIT Press, Cambridge, MA, 2023.
[20]
S. Rangineni. An analysis of data quality requirements for machine learning development pipelines frameworks. International Journal of Computer Trends and Technology, 71, 2023.
[21]
L. D. Riek. Wizard of oz studies in hri: A systematic review and new reporting guidelines. Journal of Human-Robot Interaction, 1(1):119--136, 2012.
[22]
P. Schmidt, A. Reiss, R. Dürichen, and K. V. Laerhoven. Wearable-based affect recognition-a review. Sensors, 19(19):4079, 2019.
[23]
A. Vabalas, E. Gowen, E. Poliakoff, and A. J. Casson. Machine learning algorithm validation with a limited sample size. PloS one, 14(11):e0224365, 2019.
[24]
J. Wang, C. Lan, C. Liu, Y. Ouyang, T. Qin, W. Lu, Y. Chen, W. Zeng, and P. Yu. Generalizing to unseen domains: A survey on domain generalization. IEEE Transactions on Knowledge and Data Engineering, 2022.
[25]
E. Wascher, J. Reiser, G. Rinkenauer, M. Larrá, F. A. Dreger, D. Schneider, M. Karthaus, S. Getzmann, M. Gutberlet, and S. Arnau. Neuroergonomics on the go: An evaluation of the potential of mobile EEG for workplace assessment and design. Human Factors, 65(1):86--106, 2023.
[26]
M. B. Weinger, O. W. Herndon, M. H. Zornow, M. P. Paulus, D. M. Gaba, and L. T. Dallen. An objective methodology for task analysis and workload assessment in anesthesia providers. Anesthesiology, 80(1):77--92, 1994.
[27]
C. D. Wickens, S. E. Gordon, Y. Liu, and J. Lee. An Introduction to Human Factors Engineering, volume 2. Pearson Prentice Hall Upper Saddle River, NJ, 2004.
[28]
Y. Zhang, B. Kang, B. Hooi, S. Yan, and J. Feng. Deep long-tailed learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(9):10795--10816, 2023.

Index Terms

  1. Design Principles for Building Robust Human-Robot Interaction Machine Learning Models

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    HRI '24: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction
    March 2024
    1408 pages
    ISBN:9798400703232
    DOI:10.1145/3610978
    This work is licensed under a Creative Commons Attribution International 4.0 License.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 11 March 2024

    Check for updates

    Author Tags

    1. design principles
    2. human-robot interaction
    3. machine learning

    Qualifiers

    • Short-paper

    Conference

    HRI '24
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 268 of 1,124 submissions, 24%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 142
      Total Downloads
    • Downloads (Last 12 months)142
    • Downloads (Last 6 weeks)37
    Reflects downloads up to 16 Nov 2024

    Other Metrics

    Citations

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media