Nothing Special   »   [go: up one dir, main page]

skip to main content
survey

Where Are the (Cellular) Data?

Published: 15 September 2023 Publication History

Abstract

New generations of cellular networks are data oriented, targeting the integration of machine learning and artificial intelligence solutions. Data availability, required to train and compare machine learning based networking solutions, is therefore becoming an important topic and a significant concern. Operators do collect data, but they rarely share it because of privacy concerns. This article starts by reviewing the few publicly available cellular datasets, which created bursts of innovation with their release. The scarcity of such data is so acute that researchers are collecting network data using their own tools, developed in-house and covered in the second part of this survey.

References

[2]
University of Chicago. 2021. Grant Park. Retrieved August 5, 2022 from https://people.cs.uchicago.edu/muhiqbalcr/grant-park-may-jun-2021/CSV-GP.zip
[4]
Open5GCore. 2021. Open5GCore Home Page. Retrieved August 5, 2022 from https://www.open5gcore.org
[5]
FED4FIRE. 2022. About FED4FIRE+. Retrieved December 13, 2022 from https://www.fed4fire.eu/
[6]
AERPAW. 2022. AERPAW Home Page. Retrieved December 5, 2022 from https://aerpaw.org/
[7]
AKOS Test Net. 2022. AKOS Test Net—Open Data. Retrieved December 1, 2022 from https://www.akostest.net/en/opendata
[8]
ARA. 2022. ARA Home Page. Retrieved December 5, 2022 from https://arawireless.org/
[9]
Government of Canada. 2022. Canadian Radio-Television and Telecommunications Commission. Retrieved August 4, 2022 from https://crtc.gc.ca/eng/home-accueil.htm
[10]
Virginia Tech. 2022. Cognitive Radio Network Testbed. Retrieved December 13, 2022 from https://cornet.wireless.vt.edu/index.html
[11]
COSMOS. 2022. COSMOS Home Page. Retrieved December 5, 2022 from https://cosmos-lab.org/
[12]
Federal Communications Commission. 2022. Federal Communications Commission Home Page. Retrieved August 4, 2022 from https://www.fcc.gov
[13]
Free5GC. 2022. Free5GC Home Page. Retrieved August 5, 2022 from https://www.free5gc.org
[14]
FIT. 2022. Future Internet Testing Facility. Retrieved December 13, 2022 from https://fit-equipex.fr
[15]
Gyokov Solutions. 2022. G-NetTrack. Retrieved August 4, 2022 from https://gyokovsolutions.com/g-nettrack/
[16]
Government of Canada. 2022. Innovation, Science and Economic Development Canada. Retrieved August 4, 2022 from https://open.canada.ca/en/open-data
[17]
MobileInsight. 2022. MobileInsight Home Page. Retrieved August 4, 2022 from http://mobileinsight.net/
[18]
MONROE Project. 2022. MONROE: Measuring Mobile Broadband Networks in Europe. Retrieved December 19, 2022 from https://www.monroe-project.eu
[19]
CZ NIC. 2022. NetMetr—Open Data. Retrieved December 1, 2022 from https://www.netmetr.cz/en/open-data.html
[20]
OneLab. 2022. OneLab Home Page. Retrieved December 18, 2022 from https://onelab.eu
[21]
Open5GS. 2022. Open5GS Home Page. Retrieved August 5, 2022 from https://open5gs.org
[22]
PAWR. 2022. Platforms for Advanced Wireless Research. Retrieved December 4, 2022 from https://advancedwireless.org/
[23]
Powder. 2022. Powder Home Page. Retrieved December 4, 2022 from https://powderwireless.net/
[24]
Stanford University. 2022. Puffer. Retrieved August 5, 2022 from https://puffer.stanford.edu
[25]
RootMetrics. 2022. RootMetrics Home Page. Retrieved January 11, 2023 from https://www.rootmetrics.com/en-US/home
[26]
RTR-NetTest. 2022. RTR-NetTest Home Page. Retrieved November 23, 2022 from https://www.netztest.at/en/
[27]
Firebase. 2022. SigCap. Retrieved August 5, 2022 from https://appdistribution.firebase.google.com/pub/i/5b022e1d936d1211
[28]
Slices-RI. 2022. Slices-RI Home Page. Retrieved December 13, 2022 from https://www.slices-ri.eu/
[29]
Government of Canada. 2022. Spectrum Management System. Retrieved August 5, 2022 from http://sms-sgs.ic.gc.ca/eic/site/sms-sgs-prod.nsf/eng/home
[30]
SPECURE. 2022. SPECURE—Open Data. Retrieved December 1, 2022 from https://www.meracinternetu.sk/en/opendata
[31]
Android tcpdump. 2022. tcpdump. Retrieved August 5, 2022 from https://www.androidtcpdump.com/
[32]
Tutela. 2022. Tutela Home Page. Retrieved January 11, 2023 from https://www.tutela.com
[33]
BEREC. 2022. What Is BEREC? Retrieved November 22, 2022 from https://www.berec.europa.eu/en/berec/what-is-berec
[34]
Imec iLab. 2022. Wireless Testlab and OfficeLab. Retrieved December 18, 2022 from https://doc.ilabt.imec.be/ilabt/wilab/
[35]
Orange Business. 2023. Orange Flux Vision. Retrieved January 11, 2023 from https://www.orange-business.com/fr/produits/flux-vision
[36]
Predict.io. 2023. Predict.io Home Page. Retrieved January 11, 2023 from https://www.predict.io
[37]
SFR Business. 2023. SFR Geostatistics. Retrieved January 11, 2023 from https://www.sfrbusiness.fr/relation-client/sfr-geostatistics/
[38]
3GPP. 2021. NG-RAN; Architecture Description. Technical specification (TS) 38.401. Version 16.7.0. 3rd Generation Partnership Project (3GPP). https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3219
[39]
3GPP. 2022. Management and Orchestration; 5G Performance Measurements. Technical specification (TS) 28.552. Version 17.1.0. 3rd Generation Partnership Project (3GPP). https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3413
[40]
3GPP. 2022. NR; Layer 2 Measurements. Technical specification (TS) 38.314. Version 17.1.0. 3rd Generation Partnership Project (3GPP). https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3671
[41]
3GPP. 2022. NR; Physical Layer Measurements. Technical specification (TS) 38.215. Version 17.2.0. 3rd Generation Partnership Project (3GPP). https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3217
[42]
3GPP. 2022. Technical Specification Group Services and System Aspects; Release 17 Description. 3rd Generation Partnership Project (3GPP).
[43]
Mamta Agiwal, Hyeyeon Kwon, Seungkeun Park, and Hu Jin. 2021. A survey on 4G-5G dual connectivity: Road to 5G implementation. IEEE Access 9 (2021), 16193–16210.
[44]
Petri Ahokangas, Marja Matinmikko-Blue, Seppo Yrjölä, Veikko Seppänen, Heikki Hämmäinen, Risto Jurva, and Matti Latva-Aho. 2019. Business models for local 5G micro operators. IEEE Transactions on Cognitive Communications and Networking 5, 3 (2019), 730–740.
[45]
Özgü Alay, Andra Lutu, Rafael García, Miguel Peón-Quirós, Vincenzo Mancuso, Thomas Hirsch, Tobias Dely, Jonas Werme, Kristian Evensen, Audun Hansen, Stefan Alfredsson, Jonas Karlsson, Anna Brunstrom, Ali Safari Khatouni, Marco Mellia, Marco Ajmone Marsan, Roberto Monno, and Hakon Lonsethagen. 2022. MONROE: Measuring mobile broadband networks in Europe. In Building the Future Internet through FIRE. River Publishers, 155–187.
[46]
ORAN Alliance. 2018. O-RAN: Towards an Open and Smart RAN. Retrieved July 26, 2023 from https://www.o-ran.org/resources
[47]
Maximilian Arnold, Jakob Hoydis, and Stephan ten Brink. 2019. Novel massive MIMO channel sounding data applied to deep learning-based indoor positioning. In Proceedings of the 12th International ITG Conference on Systems, Communications, and Coding (SCC’19). 1–6.
[48]
Carlos Baena, Oswaldo Sebastián Peñaherrera-Pulla, Lourdes Camacho, Raquel Barco, and Sergio Fortes. 2022. E2E Dataset of Video Streaming and Cloud Gaming Services over 4G and 5G. Retrieved July 26, 2023 from
[49]
Matheus H. C. Barboza, Ricardo de S. Alencar, Julio C. Chaves, Moacyr A. H. B. Silva, Romulo D. Orrico, and Alexandre G. Evsukoff. 2021. Identifying human mobility patterns in the Rio de Janeiro metropolitan area using call detail records. Transportation Research Record 2675, 4 (2021), 213–221.
[50]
Gianni Barlacchi, Marco De Nadai, Roberto Larcher, Antonio Casella, Cristiana Chitic, Giovanni Torrisi, Fabrizio Antonelli, Alessandro Vespignani, Alex Pentland, and Bruno Lepri. 2015. A multi-source dataset of urban life in the city of Milan and the Province of Trentino. Scientific Data 2, 1 (2015), 1–15.
[51]
BEREC. 2014. Annex of Monitoring Quality of Internet Access Services in the Context of Net Neutrality. Report 14-117. Body of European Regulators for Electronic Communications (BEREC). https://www.berec.europa.eu/sites/default/files/files/document_register_store/2014/9/BoR2028142920117_Annex201_NN_QoS_Monitoring_Report_final.pdf
[52]
BEREC. 2017. Net Neutrality Measurement Tool Specification. Report 17-179. Body of European Regulators for Electronic Communications (BEREC). https://www.berec.europa.eu/sites/default/files/files/document_register_store/2017/\10/BoR_281729_179_NN_measurement_tool_specification_-_Prep_for_publication_-_Clean.pdf
[53]
Lorenzo Bertizzolo, Leonardo Bonati, Emrecan Demirors, Amani Al-Shawabka, Salvatore D’Oro, Francesco Restuccia, and Tommaso Melodia. 2020. Arena: A 64-antenna SDR-based ceiling grid testing platform for sub-6 GHz 5G-and-beyond radio spectrum research. Computer Networks 181 (2020), 107436.
[54]
Vincent D. Blondel, Adeline Decuyper, and Gautier Krings. 2015. A survey of results on mobile phone datasets analysis. EPJ Data Science 4 (2015), Article 10, 55 pages.
[55]
Vincent D. Blondel, Markus Esch, Connie Chan, Fabrice Clérot, Pierre Deville, Etienne Huens, Frédéric Morlot, Zbigniew Smoreda, and Cezary Ziemlicki. 2012. Data for development: The D4D challenge on mobile phone data. arXiv preprint arXiv:1210.0137 (2012).
[56]
Andrey Bogomolov, Bruno Lepri, Roberto Larcher, Fabrizio Antonelli, Fabio Pianesi, and Alex Pentland. 2016. Energy consumption prediction using people dynamics derived from cellular network data. EPJ Data Science 5 (2016), Article 13.
[57]
Ayub Bokani, Mahbub Hassan, Salil S. Kanhere, Jun Yao, and Garson Zhong. 2016. Comprehensive mobile bandwidth traces from vehicular networks. In Proceedings of the 7th International Conference on Multimedia Systems. 1–6.
[58]
Lorenzo Bracciale, Marco Bonola, Pierpaolo Loreti, Giuseppe Bianchi, Raul Amici, and Antonello Rabuffi. 2014. CRAWDAD dataset roma/taxi (v. 2014-07-17). Retrieved July 26, 2023 from
[59]
David A. Burgess and Harvind S. Samra. 2008. The Open BTS Project. Technical Report. Kestrel Signal Processing.
[60]
Julio Cesar Chaves. 2018. Ordinary Mobility Detected by Call Detail Records along 2014. Retrieved July 26, 2023 from
[61]
Soukaina Cherkaoui, Ines Keskes, Herve Rivano, and Razvan Stanica. 2016. LTE-A random access channel capacity evaluation for M2M communications. In Proceedings of the IFIP Conference on Wireless Days (WD’16).
[62]
Marco Cominelli, Francesco Gringoli, and Renato Lo Cigno. 2022. AntiSense: Standard-compliant CSI obfuscation against unauthorized Wi-Fi sensing. Computer Communications 185 (2022), 92–103.
[63]
Marco Cominelli, Francesco Gringoli, and Renato Lo Cigno. 2022. CSI-Based Device-Free Localization and Obfuscation. Retrieved July 26, 2023 from
[64]
Federal Communications Commission. 2020. Measuring Mobile Broadband. Retrieved August 4, 2022 from https://www.fcc.gov/general/measuring-mobile-broadband-performance
[65]
Federal Communications Commission. 2022. Measuring Broadband America Mobile Data. Retrieved August 4, 2022 from https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-broadband-america-mobile-data#data-dictionaries-and-information
[66]
Quentin De Coninck, Matthieu Baerts, Benjamin Hesmans, and Olivier Bonaventure. 2016. CRAWDAD Dataset uclouvain/mptcp_smartphone (v. 2016-03-04). Retrieved July 26, 2023 from
[67]
Sibren De Bast and Sofie Pollin. 2021. Ultra Dense Indoor MaMIMO CSI Dataset. Retrieved July 26, 2023 from
[68]
Yves-Alexandre de Montjoye, Zbigniew Smoreda, Romain Trinquart, Cezary Ziemlicki, and Vincent D. Blondel. 2014. D4D-senegal: The second mobile phone data for development challenge. arXiv preprint arXiv:1407.4885 (2014).
[69]
Shuo Deng, Ravi Netravali, Anirudh Sivaraman, and Hari Balakrishnan. 2014. WiFi, LTE, or both? Measuring multi-homed wireless Internet performance. In Proceedings of the 2014 Conference on Internet Measurement. 181–194.
[70]
Rex W. Douglass, David A. Meyer, Megha Ram, David Rideout, and Dongjin Song. 2015. High resolution population estimates from telecommunications data. EPJ Data Science 4 (2015), Article 4.
[71]
Merim Dzaferagic, Nicola Marchetti, and Irene Macaluso. 2021. Minimizing the signaling overhead and latency based on users’ mobility patterns. IEEE Systems Journal 15, 1 (2021), 77–84.
[72]
Nathan Eagle and Alex (Sandy) Pentland. 2005. CRAWDAD Dataset mit/reality (v. 2005-07-01). Retrieved July 26, 2023 from
[73]
Marco Fiore, Panagiota Katsikouli, Elli Zavou, Mathieu Cunche, Francoise Fessant, Dominique Le Hello, Ulrich Matchi Aivodji, Baptiste Olivier, Tony Quertier, and Razvan Stanica. 2020. Privacy in trajectory micro-data publishing: A survey. Transactions on Data Privacy 13, 2 (2020), 91–149.
[74]
Kaixuan Gao, Huiqiang Wang, and Hongwu Lv. 2021. CSI Dataset towards 5G NR High-Precision Positioning. Retrieved July 26, 2023 from
[75]
Kaixuan Gao, Huiqiang Wang, Hongwu Lv, and Wenxue Liu. 2022. Towards 5G NR high-precision indoor positioning via channel frequency response: A new paradigm and dataset generation method. IEEE Journal on Selected Areas in Communications 40, 7 (2022), 2233–2247.
[76]
Arthur Gassner, Claudiu Musat, Alexandru Rusu, and Andreas Burg. 2021. OpenCSI: An open-source dataset for indoor localization using CSI-based fingerprinting. arXiv e-prints arXiv:2104.07963 (2021).
[77]
Ismael Gomez-Miguelez, Andres Garcia-Saavedra, Paul D. Sutton, Pablo Serrano, Cristina Cano, and Doug J. Leith. 2016. srsLTE: An open-source platform for LTE evolution and experimentation. In Proceedings of the ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation, and Characterization (WiNTECH’16). ACM, New York, NY.
[78]
Francesco Gringoli, Paul Patras, Carlos Donato, Pablo Serrano, and Yan Grunenberger. 2018. Performance assessment of open software platforms for 5G prototyping. IEEE Wireless Communications 25, 5 (2018), 10–15.
[79]
Mohammad Hosseini, Yu Jiang, Ali Yekkehkhany, Richard R. Berlin, and Lui Sha. 2017. A mobile geo-communication dataset for physiology-aware DASH in rural ambulance transport. In Proceedings of the 8th ACM Conference on Multimedia Systems. 158–163.
[80]
Sahar Hoteit, Stefano Secci, Stanislav Sobolevsky, Carlo Ratti, and Guy Pujolle. 2014. Estimating human trajectories and hotspots through mobile phone data. Computer Networks 64 (2014), 296–307.
[81]
Hamza Awad Hamza Ibrahim, Omer Radhi Aqeel Al Zuobi, Maran A. Al Namari, Gaafer Mohamed Ali, and Ali Ahmed Alfaki Abdalla. 2016. Internet traffic classification using machine learning approach: Datasets validation issues. In Proceedings of the Conference on Basic Sciences and Engineering Studies (SGCAC’16).
[82]
Agbotiname Lucky Imoize, Kehinde Orolu, and Aderemi Aaron-Anthony Atayero. 2020. Analysis of key performance indicators of a 4G LTE network based on experimental data obtained from a densely populated smart city. Data in Brief 29 (2020), 105304.
[83]
Biju Issac, Wendy Japutra Jap, and Jofry Hadi Sutanto. 2009. Improved Bayesian anti-spam filter implementation and analysis on independent spam corpuses. In Proceedings of the International Conference on Computer Engineering and Technology (ICCET’09).
[84]
Telecom Italia. 2015. Telecommunications - SMS, Call, Internet - TN. Retrieved July 26, 2023 from
[85]
Anders Johansson, Magnus Esbjörnsson, Per Nordqvist, Stig Wiinberg, Roger Andersson, Bodil Ivarsson, Bengt Eksund, and Sebastian Möller. 2019. Dataset on multichannel connectivity and video transmission carried on commercial 3G/4G networks in southern Sweden. Data in Brief 25 (2019), 104192.
[86]
Bryan Klimt and Yiming Yang. 2004. Introducing the Enron corpus. In Proceedings of the International Conference on Email and Anti-Spam (CEAS’04).
[87]
Erik G. Larsson, Ove Edfors, Fredrik Tufvesson, and Thomas L. Marzetta. 2014. Massive MIMO for next generation wireless systems. IEEE Communications Magazine 52, 2 (2014), 186–195.
[88]
Juha K. Laurila, Daniel Gatica-Perez, Imad Aad, J. Blom, Olivier Bornet, Trinh-Minh-Tri Do, Olivier Dousse, Julien Eberle, and Markus Miettinen. 2012. The Mobile Data Challenge: Big Data for Mobile Computing Research. Technical Report. EPFL Scientific Publications.
[89]
Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution: Densification and shrinking diameters. ACM Transactions on Knowledge Discovery from Data 1, 1 (2007), 2–42.
[90]
Yuanjie Li, Chunyi Peng, Zengwen Yuan, Jiayao Li, Haotian Deng, and Tao Wang. 2016. MobileInsight: Extracting and analyzing cellular network information on smartphones. In Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking. 202–215.
[91]
Shao-Yu Lien, Shin-Lin Shieh, Yenming Huang, Borching Su, Yung-Lin Hsu, and Hung-Yu Wei. 2017. 5G new radio: Waveform, frame structure, multiple access, and initial access. IEEE Communications Magazine 55, 6 (2017), 64–71.
[92]
Orlando E. Martínez-Durive, Sachit Mishra, Cezary Ziemlicki, Stefania Rubrichi, Zbigniew Smoreda, and Marco Fiore. 2023. The NetMob23 dataset: A high-resolution multi-region service-level mobile data traffic cartography. arXiv preprint arXiv:2305.06933 (2023).
[93]
Julian McAuley and Jure Leskovec. 2012. Learning to discover social circles in ego networks. In Proceedings of the International Conference on Neural Information Processing Systems (NIPS’12).
[94]
Britta Meixner, Jan Willem Kleinrouweler, and Pablo Cesar. 2018. 4G/LTE channel quality reference signal traces Data Set. In Proceedings of the 9th ACM Multimedia Systems Conference (MMSys’18). 387–392.
[95]
Tommaso Melodia, Stefano Basagni, Kaushik R. Chowdhury, Abhimanyu Gosain, Michele Polese, Pedram Johari, and Leonardo Bonati. 2021. Tutorial: Colosseum, the world’s largest wireless network emulator. In Proceedings of the 27th Annual International Conference on Mobile Computing and Networking (MobiCom’21).
[96]
Germán Martín Mendoza-Silva, Miguel Matey-Sanz, Joaquín Torres-Sospedra, and Joaquín Huerta. 2019. BLE RSS measurements dataset for research on accurate indoor positioning. Data 4, 1 (2019), 12.
[97]
Abdelrahim Mohamed, Oluwakayode Onireti, Seyed Amir Hoseinitabatabaei, Muhammad Imran, Ali Imran, and Rahim Tafazolli. 2015. Mobility prediction for handover management in cellular networks with control/data separation. In Proceedings of the IEEE International Conference on Communications (ICC’15).
[98]
Diala Naboulsi, Marco Fiore, Stephane Ribot, and Razvan Stanica. 2015. Large-scale mobile traffic analysis: A survey. IEEE Communications Surveys & Tutorials 18, 1 (2015), 124–161.
[99]
Arvind Narayanan, Eman Ramadan, Jason Carpenter, Qingxu Liu, Yu Liu, Feng Qian, and Zhi-Li Zhang. 2020. A first look at commercial 5G performance on smartphones. In Proceedings of The Web Conference 2020 (WWW’20). ACM, New York, NY, 894–905. DOI:
[100]
Arvind Narayanan, Eman Ramadan, Rishabh Mehta, Xinyue Hu, Qingxu Liu, Rostand A. K. Fezeu, Udhaya Kumar Dayalan, Saurabh Verma, Peiqi Ji, Tao Li, Feng Qian, and Zhi-Li Zhang. 2020. Lumos5G: Mapping and predicting commercial mmWave 5G throughput. In Proceedings of the ACM Internet Measurement Conference (IMC’20). ACM, New York, NY, 176–193. DOI:
[101]
Arvind Narayanan, Muhammad Iqbal Rochman, Ahmad Hassan, Bariq S. Firmansyah, Vanlin Sathya, Monisha Ghosh, Feng Qian, and Zhi-Li Zhang. 2022. A comparative measurement study of commercial 5G mmWave deployments. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM’22). 800–809. DOI:
[102]
Navid Nikaein, Mahesh K. Marina, Saravana Manickam, Alex Dawson, Raymond Knopp, and Christian Bonnet. 2014. OpenAirInterface: A flexible platform for 5G research. ACM SIGCOMM Computer Communication Review 44, 5 (2014), 33–38.
[103]
Mengguan Pan, Peng Liu, Shengheng Liu, Wangdong Qi, Yongming Huang, Xiaohu You, Xinghua Jia, and Xiaodong Li. 2022. Efficient joint DOA and TOA estimation for indoor positioning with 5G picocell base stations. IEEE Transactions on Instrumentation and Measurement 71 (2022), 1–19.
[104]
Mengguan Pan, Shengheng Liu, Peng Liu, Wangdong Qi, Yongming Huang, Wang Zheng, Qihui Wu, and Markus Gardill. 2022. 5G CFR/CSI Dataset for Wireless Channel Parameter Estimation, Array Calibration, and Indoor Positioning. Retrieved July 26, 2023 from
[105]
Michal Piorkowski, Natasa Sarafijanovic-Djukic, and Matthias Grossglauser. 2009. CRAWDAD Dataset epfl/mobility (v. 2009-02-24). Retrieved July 26, 2023 from
[106]
Darijo Raca, Dylan Leahy, Cormac J. Sreenan, and Jason J. Quinlan. 2020. Beyond throughput, the next generation: A 5G dataset with channel and context metrics. In Proceedings of the 11th ACM Multimedia Systems Conference. 303–308.
[107]
Darijo Raca, Jason J. Quinlan, Ahmed H. Zahran, and Cormac J. Sreenan. 2018. Beyond throughput: A 4G LTE dataset with channel and context metrics. In Proceedings of the 9th ACM Multimedia Systems Conference. 460–465.
[108]
Dipl-Ing Vaclav Raida. 2021. Data-Driven Estimation of Spatiotemporal Performance Maps in Cellular Networks. Ph. D. dissertation. University of Bologna Vienna.
[109]
Vaclav Raida, Martin Lerch, Philipp Svoboda, and Markus Rupp. 2018. Deriving cell load from RSRQ measurements. In Proceedings of the 2018 Network Traffic Measurement and Analysis Conference (TMA’18). IEEE, Los Alamitos, CA, 1–6.
[110]
Vaclav Raida, Philipp Svoboda, Martin Koglbauer, and Markus Rupp. 2020. On the stability of RSRP and variability of other KPIs in LTE downlink—An open dataset. In Proceedings of the 2020 IEEE Global Communications Conference (GLOBECOM’20). IEEE, Los Alamitos, CA, 1–6.
[111]
Vaclav Raida, Philipp Svoboda, Martin Lerch, and Markus Rupp. 2019. Repeatability for spatiotemporal throughput measurements in LTE. In Proceedings of the 2019 IEEE 89th Vehicular Technology Conference (VTC’19 Spring). IEEE, Los Alamitos, CA, 1–5.
[112]
Vaclav Raida, Philipp Svoboda, and Markus Rupp. 2018. Lightweight detection of tariff limits in cellular mobile networks. In Proceedings of the 2018 IEEE 29th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC’18). IEEE, Los Alamitos, CA, 1–7.
[113]
Vaclav Raida, Philipp Svoboda, and Markus Rupp. 2020. 2020-GLOBECOM-LTE-DL-static-rural-and-urban-outdoor-dataset. Retrieved July 26, 2023 from
[114]
Vaclav Raida, Philipp Svoboda, and Markus Rupp. 2020. 2020-GLOBECOM-LTE-DL-static-urban-indoor-dataset. Retrieved July 26, 2023 from
[115]
Vaclav Raida, Philipp Svoboda, and Markus Rupp. 2020. 2020-VTC-Fall-RP-DTW-dataset. Retrieved July 26, 2023 from
[116]
Vaclav Raida, Philipp Svoboda, and Markus Rupp. 2020. Modified dynamic time warping with a reference path for alignment of repeated drive-tests. In Proceedings of the 2020 IEEE 92nd Vehicular Technology Conference (VTC’20 Fall). IEEE, Los Alamitos, CA, 1–6.
[117]
Vaclav Raida, Philipp Svoboda, and Markus Rupp. 2020. Real world performance of LTE downlink in a static dense urban scenario—An open dataset. In Proceedings of the 2020 IEEE Global Communications Conference (GLOBECOM’20). IEEE, Los Alamitos, CA, 1–6.
[118]
Gyan Ranjan, Hui Zang, Zhi-Li Zhang, and Jean Bolot. 2012. Are call detail records biased for sampling human mobility? ACM SIGMOBILE Mobile Computing and Communications Review 16, 3 (2012), 33–44.
[119]
Dipankar Raychaudhuri, Ivan Seskar, Gil Zussman, Thanasis Korakis, Dan Kilper, Tingjun Chen, Jakub Kolodziejski, Michael Sherman, Zoran Kostic, Xiaoxiong Gu, Harish Krishnaswamy, Sumit Maheshwari, Panagiotis Skrimponis, and Craig Gutterman. 2020. Challenge: COSMOS: A city-scale programmable testbed for experimentation with advanced wireless. In Proceedings of the 26th Annual International Conference on Mobile Computing and Networking (MobiCom’20). 1–13.
[120]
Matei Ripeanu, Adriana Iamnitchi, and Ian T. Foster. 2002. Mapping the Gnutella network: Properties of large-scale peer-to-peer systems and implications for system design. IEEE Internet Computing Journal 6, 1 (2002), 50–57.
[121]
Muhammad Iqbal Rochman, Vanlin Sathya, Norlen Nunez, Damian Fernandez, Monisha Ghosh, Ahmed S. Ibrahim, and William Payne. 2021. A comparison study of cellular deployments in Chicago and Miami using apps on smartphones. arXiv preprint arXiv:2108.00453 (2021).
[122]
Benedek Rozemberczki and Rik Sarkar. 2020. Characteristic functions on graphs: Birds of a feather, from statistical descriptors to parametric models. In Proceedings of the ACM International Conference on Information and Knowledge Management (CIKM’20).
[123]
J. Xavier Salvat, Jose A. Ayala-Romero, Lanfranco Zanzi, Andres Garcia-Saavedra, and Xavier Costa-Perez. 2023. Open radio access networks (O-RAN) experimentation platform: Design and datasets. IEEE Communications Magazine. Early access, June 5, 2023.
[124]
J. Xavier Salvat Lozano, Jose A. Ayala-Romero, Lanfranco Zanzi, Andres Garcia-Saavedra, and Xavier Costa-Perez. 2022. O-RAN Experimental Evaluation Datasets. Retrieved July 26, 2023 from
[125]
Salvatore Scellato, Mirco Musolesi, Cecilia Mascolo, Vito Latora, and Andrew T. Campbell. 2011. NextPlace: A spatio-temporal prediction framework for pervasive systems. In Proceedings of the International Conference on Pervasive Computing.
[126]
Matthias Schulz, Daniel Wegemer, and Matthias Hollick. 2017. Nexmon: The C-Based Firmware Patching Framework. Retrieved July 26, 2023 from https://github.com/seemoo-lab/nexmon
[127]
Wee-Seng Soh and Hyong S. Kim. 2003. QoS provisioning in cellular networks based on mobility prediction techniques. IEEE Communications Magazine 41, 1 (2003), 86–92.
[128]
Simon Tewes, Markus Heinrichs, Kevin Weinberger, Rainer Kronberger, and Aydin Sezgin. 2023. A Comprehensive Dataset of RIS-Based Channel Measurements in the 5GHz Band. Retrieved July 26, 2023 from
[129]
Raza Ul Mustafa, Christian Esteve Rothenberg, and Chadi Barakat. 2022. YouTube Goes 5G: Benchmarking YouTube in 4G vs 5G. Retrieved July 26, 2023 from
[130]
J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface, T. Bostoen, and F. De Turck. 2016. HTTP/2-Based adaptive streaming of HEVC video over 4G/LTE networks. IEEE Communications Letters 20, 11 (2016), 2177–2180.
[131]
Florian Wamser, Michael Seufert, Pedro Casas, Ralf Irmer, Phuoc Tran-Gia, and Raimund Schatz. 2015. YoMoApp: A tool for analyzing QoE of YouTube HTTP adaptive streaming in mobile networks. In Proceedings of the 2015 European Conference on Networks and Communications (EuCNC’15). IEEE, Los Alamitos, CA, 239–243.
[132]
Fang Wang, Yong Li, Zhaocheng Wang, and Zhixing Yang. 2016. Social-community-aware resource allocation for D2D communications underlaying cellular networks. IEEE Transactions on Vehicular Technology 65, 5 (2016), 3628–3640.
[133]
Sarah Wassermann, Pedro Casas, Michael Seufert, and Florian Wamser. 2019. On the analysis of YouTube QoE in cellular networks through in-smartphone measurements. In Proceedings of the 2019 12th IFIP Wireless and Mobile Networking Conference (WMNC’19). IEEE, Los Alamitos, CA, 71–78.
[134]
Francis Y. Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi Zhang, Philip Levis, and Keith Winstein. 2020. Learning in situ: A randomized experiment in video streaming. In Proceedings of the 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI’20). 495–511.
[135]
Paolo Zanini, Haipeng Shen, and Young Truong. 2016. Understanding resident mobility in Milan through independent component analysis of Telecom Italia mobile usage data. Annals of Applied Statistics 10, 2 (2016), 812–833.

Cited By

View all
  • (2024)A comprehensive review of 5G NR RF-EMF exposure assessment technologies: fundamentals, advancements, challenges, niches, and implicationsEnvironmental Research10.1016/j.envres.2024.119524260(119524)Online publication date: Nov-2024
  • (2024)A survey of public datasets for O-RAN: fostering the development of machine learning modelsAnnals of Telecommunications10.1007/s12243-024-01029-179:9-10(649-662)Online publication date: 5-Apr-2024
  • (2023)Using Public Datasets to Train O-RAN Deep Learning Models2023 2nd International Conference on 6G Networking (6GNet)10.1109/6GNet58894.2023.10317705(1-8)Online publication date: 18-Oct-2023

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Computing Surveys
ACM Computing Surveys  Volume 56, Issue 2
February 2024
974 pages
EISSN:1557-7341
DOI:10.1145/3613559
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 15 September 2023
Online AM: 20 July 2023
Accepted: 11 July 2023
Revised: 13 January 2023
Received: 05 August 2022
Published in CSUR Volume 56, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Cellular networks
  2. datasets
  3. measurement tools

Qualifiers

  • Survey

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)579
  • Downloads (Last 6 weeks)36
Reflects downloads up to 22 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)A comprehensive review of 5G NR RF-EMF exposure assessment technologies: fundamentals, advancements, challenges, niches, and implicationsEnvironmental Research10.1016/j.envres.2024.119524260(119524)Online publication date: Nov-2024
  • (2024)A survey of public datasets for O-RAN: fostering the development of machine learning modelsAnnals of Telecommunications10.1007/s12243-024-01029-179:9-10(649-662)Online publication date: 5-Apr-2024
  • (2023)Using Public Datasets to Train O-RAN Deep Learning Models2023 2nd International Conference on 6G Networking (6GNet)10.1109/6GNet58894.2023.10317705(1-8)Online publication date: 18-Oct-2023

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media