Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3609027.3609408acmconferencesArticle/Chapter ViewAbstractPublication PagesicfpConference Proceedingsconference-collections
research-article
Open access

Combining Dependency, Grades, and Adjoint Logic

Published: 31 August 2023 Publication History

Abstract

We propose two new dependent type systems. The first, is a dependent graded/linear type system where a graded dependent type system is connected via modal operators to a linear type system in the style of Linear/Non-linear logic. We then generalize this system to support many graded systems connected by many modal operators through the introduction of modes from Adjoint Logic. Finally, we prove several meta-theoretic properties of these two systems including graded substitution.

References

[1]
Robert Atkey. 2018. Syntax and Semantics of Quantitative Type Theory. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. ACM. https://doi.org/10.1145/3209108.3209189
[2]
P. N. Benton. 1995. A mixed linear and non-linear logic: Proofs, terms and models. In Computer Science Logic. Springer Berlin Heidelberg, 121–135. https://doi.org/10.1007/bfb0022251
[3]
Luís Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear Propositions. In CONCUR 2010 - Concurrency Theory, Paul Gastin and François Laroussinie (Eds.) (Lecture Notes in Computer Science, Vol. 6269). Springer Berlin Heidelberg, 222–236. https://doi.org/10.1007/978-3-642-15375-4_16
[4]
Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie Weirich. 2021. A graded dependent type system with a usage-aware semantics. Proceedings of the ACM on Programming Languages, 5, POPL (2021), jan, 1–32. https://doi.org/10.1145/3434331
[5]
Peter Dybjer. 1996. Internal type theory. In Types for Proofs and Programs, Stefano Berardi and Mario Coppo (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 120–134. isbn:978-3-540-70722-6 https://doi.org/10.1007/3-540-61780-9_66
[6]
Jean-Yves Girard. 1987. Linear logic. Theoretical Computer Science, 50, 1 (1987), 1–101. https://doi.org/10.1016/0304-3975(87)90045-4
[7]
Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. 1992. Bounded linear logic: a modular approach to polynomial-time computability. Theoretical Computer Science, 97, 1 (1992), 1–66. https://doi.org/10.1016/0304-3975(92)90386-T
[8]
Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. 2020. Multimodal Dependent Type Theory. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’20). Association for Computing Machinery, New York, NY, USA. 492–506. isbn:9781450371049 https://doi.org/10.1145/3373718.3394736
[9]
Peter Hanukaev and Harley Eades III. 2023. Combining Dependency, Grades, and Adjoint Logic (extended version). https://doi.org/10.48550/arXiv.2307.09563
[10]
Bartholomeus Paulus Franciscus Jacobs. 1991. Categorical type theory. Nijmegen. PhD thesis
[11]
Shin-ya Katsumata. 2018. A Double Category Theoretic Analysis of Graded Linear Exponential Comonads. In Lecture Notes in Computer Science. Springer International Publishing, 110–127. https://doi.org/10.1007/978-3-319-89366-2_6
[12]
Neelakantan R. Krishnaswami, Pierre Pradic, and Nick Benton. 2015. Integrating Linear and Dependent Types. ACM SIGPLAN Notices, 50, 1 (2015), may, 17–30. https://doi.org/10.1145/2775051.2676969
[13]
Daniel R. Licata, Michael Shulman, and Mitchell Riley. 2017. A Fibrational Framework for Substructural and Modal Logics. In 2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017), Dale Miller (Ed.) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 84). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany. 25:1–25:22. isbn:978-3-95977-047-7 issn:1868-8969 https://doi.org/10.4230/LIPIcs.FSCD.2017.25
[14]
Benjamin Moon, Harley Eades III, and Dominic Orchard. 2021. Graded Modal Dependent Type Theory. In Programming Languages and Systems. Springer International Publishing, 462–490. https://doi.org/10.1007/978-3-030-72019-3_17
[15]
Bengt Nordstrom, Kent Petersson, and Jan M. Smith. 1990. Programming in Martin-Löf’s Type Theory: An Introduction. Oxford University Press, USA.
[16]
Peter O’Hearn, John Reynolds, and Hongseok Yang. 2001. Local Reasoning about Programs that Alter Data Structures. In Computer Science Logic, Laurent Fribourg (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg. 1–19. https://doi.org/10.1007/3-540-44802-0_1
[17]
Peter W. O’Hearn and David J. Pym. 1999. The Logic of Bunched Implications. The Bulletin of Symbolic Logic, 5, 2 (1999), 215–244. https://doi.org/10.2307/421090
[18]
Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. 2019. Quantitative Program Reasoning with Graded Modal Types. Proc. ACM Program. Lang., 3, ICFP (2019), Article 110, jul, 30 pages. https://doi.org/10.1145/3341714
[19]
Klaas Pruiksma, William Chargin, Frank Pfenning, and Jason Reed. 2018. Adjoint Logic. Unpublished Draft: https://www.cs.cmu.edu/ fp/papers/adjoint18b.pdf
[20]
Victoria Vollmer, Harley Eades III, Daniel Marshall, and Dominic Orchard. [n. d.]. A Mixed Linear and Graded Logic: Proofs, Terms and Models. forthcoming
[21]
James Wood and Robert Atkey. 2022. A Framework for Substructural Type Systems. In Programming Languages and Systems, Ilya Sergey (Ed.). Springer International Publishing, Cham. 376–402. isbn:978-3-030-99336-8 https://doi.org/10.1007/978-3-030-99336-8_14

Cited By

View all
  • (2024)Functional Ownership through Fractional UniquenessProceedings of the ACM on Programming Languages10.1145/36498488:OOPSLA1(1040-1070)Online publication date: 29-Apr-2024

Index Terms

  1. Combining Dependency, Grades, and Adjoint Logic

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    TyDe 2023: Proceedings of the 8th ACM SIGPLAN International Workshop on Type-Driven Development
    August 2023
    70 pages
    ISBN:9798400702990
    DOI:10.1145/3609027
    This work is licensed under a Creative Commons Attribution 4.0 International License.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 31 August 2023

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. adjoint logic
    2. dependent types
    3. graded types
    4. linear logic
    5. resource tracking
    6. semantics

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    TyDe '23
    Sponsor:

    Upcoming Conference

    ICFP '25
    ACM SIGPLAN International Conference on Functional Programming
    October 12 - 18, 2025
    Singapore , Singapore

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)152
    • Downloads (Last 6 weeks)20
    Reflects downloads up to 22 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Functional Ownership through Fractional UniquenessProceedings of the ACM on Programming Languages10.1145/36498488:OOPSLA1(1040-1070)Online publication date: 29-Apr-2024

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media