Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Sortledton: a Universal Graph Data Structure

Published: 08 June 2023 Publication History

Abstract

Despite the wide adoption of graph processing across many different application domains, there is no underlying data structure that can serve a variety of graph workloads (analytics, traversals, and pattern matching) on dynamic graphs with single edge updates updates.

References

[1]
S. Beamer, K. Asanovic, and D. A. Patterson. Direction-optimizing breadth-first search. Sci. Program., 21(3--4):137--148, 2013.
[2]
S. Beamer, K. Asanovic, and D. A. Patterson. The GAP benchmark suite. CoRR, abs/1508.03619, 2015.
[3]
S. Beamer, K. Asanovic, and D. A. Patterson. Locality exists in graph processing: Workload characterization on an ivy bridge server. In IEEE IISWC, pages 56--65, 2015.
[4]
M. Besta, E. Peter, R. Gerstenberger, M. Fischer, M. Podstawski, C. Barthels, G. Alonso, and T. Hoefler. Demystifying graph databases: Analysis and taxonomy of data organization, system designs, and graph queries. CoRR, abs/1910.09017, 2019.
[5]
M. Capota, T. Hegeman, A. Iosup, A. Prat-P´erez, O. Erling, and P. A. Boncz. Graphalytics: A big data benchmark for graph-processing platforms. In ACM GRADES, pages 7:1--7:6, 2015.
[6]
D. Dechev, P. Pirkelbauer, and B. Stroustrup. Lock-free dynamically resizable arrays. In Springer OPODIS, volume 4305, pages 142--156, 2006.
[7]
L. Dhulipala, G. E. Blelloch, and J. Shun. Low-latency graph streaming using compressed purely-functional trees. In K. S. McKinley and K. Fisher, editors, Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22--26, 2019, pages 918--934. ACM, 2019.
[8]
B. Ding, K. Zeng, and W. Yu. Alibaba sponsor talk at VLDB, 2020.
[9]
V. V. dos Santos Dias, C. H. C. Teixeira, D. O. Guedes, W. M. Jr., and S. Parthasarathy. Fractal: A general-purpose graph pattern mining system. In ACM SIGMOD, pages 1357--1374, 2019.
[10]
D. Ediger, R. McColl, E. J. Riedy, and D. A. Bader. STINGER: high performance data structure for streaming graphs. In IEEE HPEC, pages 1--5, 2012.
[11]
O. Erling, A. Averbuch, J. L. Larriba-Pey, H. Chafi, A. Gubichev, A. Prat-P´erez, M. Pham, and P. A. Boncz. The LDBC social network benchmark: Interactive workload. In ACM SIGMOD, pages 619--630, 2015.
[12]
P. Gupta, A. Mhedhbi, and S. Salihoglu. Integrating column-oriented storage and query processing techniques into graph database management systems. CoRR, abs/2103.02284, 2021.
[13]
P. Gupta, V. Satuluri, A. Grewal, S. Gurumurthy, V. Zhabiuk, Q. Li, and J. J. Lin. Real-time twitter recommendation: Online motif detection in large dynamic graphs. Proc. VLDB Endow., 7(13):1379--1380, 2014.
[14]
M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. P. Chew. Optimistic parallelism requires abstractions. Commun. ACM, 52(9):89--97, 2009.
[15]
P. Kumar and H. H. Huang. Graphone: A data store for real-time analytics on evolving graphs. In USENIX FAST, pages 249--263, 2019.
[16]
D. D. Leo and P. A. Boncz. Fast concurrent reads and updates with pmas. In ACM GRADES-NDA, pages 8:1--8:8, 2019.
[17]
D. D. Leo and P. A. Boncz. Teseo and the analysis of structural dynamic graphs. Proc. VLDB Endow., 14(6):1053--1066, 2021.
[18]
J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data, June 2014.
[19]
P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer. LLAMA: efficient graph analytics using large multiversioned arrays. In IEEE ICDE, pages 363--374, 2015.
[20]
A. Mhedhbi and S. Salihoglu. Optimizing subgraph queries by combining binary and worst-case optimal joins. Proc. VLDB Endow., 12(11):1692--1704, 2019.
[21]
P. Pandey, B. Wheatman, H. Xu, and A. Bulu¸c. Terrace: A hierarchical graph container for skewed dynamic graphs. In G. Li, Z. Li, S. Idreos, and D. Srivastava, editors, SIGMOD '21: International Conference on Management of Data, Virtual Event, China, June 20--25, 2021, pages 1372--1385. ACM, 2021.
[22]
K. Platz, N. Mittal, and S. Venkatesan. Concurrent unrolled skiplist. In IEEE ICDCS, pages 1579--1589, 2019.
[23]
X. Qiu, W. Cen, Z. Qian, Y. Peng, Y. Zhang, X. Lin, and J. Zhou. Real-time constrained cycle detection in large dynamic graphs. Proc. VLDB Endow., 11(12):1876--1888, 2018.
[24]
J. Reinders. Intel threading building blocks - outfitting C++ for multi-core processor parallelism. O'Reilly, 2007.
[25]
S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. ¨Ozsu. The ubiquity of large graphs and surprising challenges of graph processing. Proc. VLDB Endow., 11(4):420--431, 2017.
[26]
A. Sharma, J. Jiang, P. Bommannavar, B. Larson, and J. J. Lin. Graphjet: Real-time content recommendations at twitter. Proc. VLDB Endow., 9(13):1281--1292, 2016.
[27]
J. Shun and G. E. Blelloch. Ligra: a lightweight graph processing framework for shared memory. In ACM SIGPLAN PPoPP, pages 135--146, 2013.
[28]
X. Zhu, M. Serafini, X. Ma, A. Aboulnaga, W. Chen, and G. Feng. Livegraph: A transactional graph storage system with purely sequential adjacency list scans. Proc. VLDB Endow., 13(7):1020--1034, 2020.

Cited By

View all
  • (2023)NeutronStream: A Dynamic GNN Training Framework with Sliding Window for Graph StreamsProceedings of the VLDB Endowment10.14778/3632093.363210817:3(455-468)Online publication date: 1-Nov-2023

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM SIGMOD Record
ACM SIGMOD Record  Volume 52, Issue 1
March 2023
118 pages
ISSN:0163-5808
DOI:10.1145/3604437
Issue’s Table of Contents
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 08 June 2023
Published in SIGMOD Volume 52, Issue 1

Check for updates

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)77
  • Downloads (Last 6 weeks)2
Reflects downloads up to 20 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2023)NeutronStream: A Dynamic GNN Training Framework with Sliding Window for Graph StreamsProceedings of the VLDB Endowment10.14778/3632093.363210817:3(455-468)Online publication date: 1-Nov-2023

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media