Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3659914.3659940acmconferencesArticle/Chapter ViewAbstractPublication PagespascConference Proceedingsconference-collections
research-article

A Portable and Efficient Lagrangian Particle Capability for Idealized Atmospheric Phenomena

Published: 03 June 2024 Publication History

Abstract

The Cloud Model version 1 is an atmospheric model that allows for idealized studies of atmospheric phenomena. A new Lagrangian microphysics capability has been added, enabling a significantly more accurate representation than the traditional bulk or multi-moment approaches frequently found in mesoscale atmospheric models. We have utilized a directive-based approach to enable a single source code to efficiently support execution on both CPU and GPU-based computing platforms. In addition to the use of accelerator directives, changes to the data structures and the message-passing approach used by the Lagrangian particle-based microphysics module were necessary to enable efficient execution for a large number of particles. We focus on a configuration that will be used to investigate the impact of oceanic sea spray on the atmospheric boundary layer within a hurricane. We observe a factor of 5.1× reduction in time to the solution when comparing the execution time for 256 NVIDIA A100 GPUs versus 256 AMD EPYC™ Milan-based compute nodes using 1 billion particles.

References

[1]
Bareford, M.: Monitoring the Cray XC30 power management hardware counters. Proceedings of CUG2015, Seattle, WA, USA (2015)
[2]
Bieringer, P.E., Piña, A.J., Lorenzetti, D.M., Jonker, H.J.J., Sohn, M.D., Annunzio, A.J., Fry, R.N.: A graphics processing unit (GPU) approach to large eddy simulation (LES) for transport and contaminant dispersion. Atmosphere 12(7) (2021).
[3]
Bryan, G.H., Worsnop, R.P., Lundquist, J.K., Zhang, J.A.: A simple method for simulating wind profiles in the boundary layer of tropical cyclones. Boundary-Layer Meteorology 162(3), 475--502 (March 2017).
[4]
Bryan, G.H., Wyngaard, J.C., Fritsch, J.M.: Resolution requirements for the simulation of deep moist convection. Monthly Weather Review 131(10), 2394--2416 (October 2003). <2394:RRFTSO>2.0.CO;2
[5]
Chandrakar, K.K., Morrison, H., Grabowski, W.W., Bryan, G.H., Shaw, R.A.: Supersaturation variability from scalar mixing: Evaluation of a new subgridscale model using direct numerical simulations of turbulent Rayleigh-Bénard convection. Journal of the Atmospheric Sciences 79(4), 1191--1210 (April 2022).
[6]
Chen, X., Bryan, G.H., Zhang, J.A., Cione, J.J., Marks, F.D.: A framework for simulating the tropical-cyclone boundary layer using large-eddy simulation and its use in evaluating PBL parameterizations. Journal of the Atmospheric Sciences (September 2021).
[7]
Cray Performance measurement and Analysis Tools. https://hpctools.readthedocs.io/en/latest/perftools.html (2022)
[8]
cuTENSOR: A high-performance CUDA library for tensor primitives. https://docs.nvidia.com/cuda/cutensor/latest/index.html (2023)
[9]
Deardorff, J.W.: Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Meteorology 18(4), 495--527 (June 1980).
[10]
Dennis, J.M., Baker, A.H., Dobbins, B., Bell, M.M., Sun, J., Kim, Y., Cha, T.Y.: Enabling efficient execution of a variational data assimilation application. The International Journal of High Performance Computing Applications (2022).
[11]
Dennis, J.M., Sun, J., Voelz, S., Bryan, G., Richter, D.: A portable and efficient lagrangian particle capability for idealized atmospheric phenomena. Dataset on Zenodo, (2024)
[12]
Computer and Information Systems Laboratory, Derecho: HPE Cray EX system (university community computing). (2023)
[13]
Gettelman, A., Morrison, H., Eidhammer, T., Thayer-Calder, K., Sun, J., Forbes, R., McGraw, Z., Zhu, J., Storelvmo, T., Dennis, J.: Importance of ice nucleation and precipitation on climate with the parameterization of unified microphysics across scales version 1 (pumasv1). EGUsphere 2022, 1--28 (2022).
[14]
Grabowski, W.W., Morrison, H., Shima, S.I., Abade, G.C., Dziekan, P., Pawlowska, H.: Modeling of cloud microphysics: Can we do better? Bulletin of the American Meteorological Society 100 100(4), 655--672 (2019).
[15]
van Heerwaarden, C.C., van Stratum, B.J.H., Heus, T., Gibbs, J.A., Fedorovich, E., Mellado, J.P.: MicroHH 1.0: a computational fluid dynamics code for direct numerical simulation and large-eddy simulation of atmospheric boundary layer flows. Geoscientific Model Development 10(8), 3145--3165 (2017).
[16]
Maronga, B., Gryschka, M., Heinze, R., Hoffmann, F., Kanani-Sühring, F., Keck, M., Ketelsen, K., Letzel, M.O., Sühring, M., Raasch, S.: The parallelized large-eddy simulation model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives. Geoscientific Model Development 8(8), 2515--2551 (2015).
[17]
Michalakes, J., Vachharajani, M.: GPU acceleration of numerical weather prediction. Parallel Processing Letters 18(04), 531--548 (2008).
[18]
Nsight Compute Developer tools documentation. https://docs.nvidia.com/nsight-compute/ (2023)
[19]
NCAR-Wyoming Supercomputing Center. https://en.wikipedia.org/wiki/NCAR-Wyoming_Supercomputing_Center (June 2022)
[20]
Ponder, C.: Folded maxloc algorithm. Personal Conversation (2022)
[21]
Ponder, C.: Cutensor based indirect address gather operation. Personal Conversation (2023)
[22]
Rotunno, R., Bryan, G.H.: Numerical simulations of two-layer flow past topography. part II: Lee vortices. Journal of the Atmospheric Sciences 77(3), 965--980 (March 2020).
[23]
Sauer, J.A., Muñoz-Esparza, D.: The FastEddy® resident-GPU accelerated large-eddy simulation framework: Model formulation, dynamical-core validation and performance benchmarks. Journal of Advances in Modeling Earth Systems 12(11), e2020MS002100 (2020).
[24]
Schalkwijk, J., Griffith, E.J., Post, F.H., Jonker, H.J.J.: High-performance simulations of turbulent clouds on a desktop PC: Exploiting the GPU. Bulletin of the American Meteorological Society 93(3), 307 -- 314 (2012).
[25]
Shima, S., Kusano, K., Kawano, A., Sugiyama, T., Kawahara, S.: The super-droplet method for the numerical simulation of clouds and precipitation: A particle-based and probabilistic microphysics model coupled with a non-hydrostatic model. Quarterly Journal of the Royal Meteorological Society 135, 1307--1320 (2009).
[26]
Skamarock, W.C., Klemp, J.B.: The stability of time-split numerical methods for the hydrostatic and the nonhydrostatic elastic equations. Monthly Weather Review 120(9), 2109--2127 (1992)
[27]
Stern, D.P., Bryan, G.H., Lee, C., Doyle, J.D.: Estimating the risk of extreme wind gusts in tropical cyclones using idealized large-eddy simulations and a statistical-dynamical model. Monthly Weather Review 149(12), 4183--4204 (2021).
[28]
Sun, J., Dennis, J.M., Mickelson, S.A., Vanderwende, B., Gettelman, A., Thayer-Calder, K.: Acceleration of the parameterization of unified microphysics across scales (PUMAS) on the graphics processing unit (GPU) with directive-based methods. JAMES 15 (2023).
[29]
Thakur, R., Rabenseifner, R., Group, W.: Optimization of collective communication operations in MPICH. The International Journal of High Performance Computing Applications 19 (September 2016).
[30]
Wicker, L.J., Skamarock, W.C.: Time-splitting methods for elastic models using forward time schemes. Monthly Weather Review 130(8), 2088--2097 (August 2002). <2088:TSMFEM>2.0.CO;2.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
PASC '24: Proceedings of the Platform for Advanced Scientific Computing Conference
June 2024
296 pages
ISBN:9798400706394
DOI:10.1145/3659914
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 03 June 2024

Check for updates

Author Tags

  1. GPU
  2. OpenACC
  3. MPI
  4. roofline
  5. power efficiency

Qualifiers

  • Research-article

Funding Sources

Conference

PASC '24
Sponsor:

Acceptance Rates

PASC '24 Paper Acceptance Rate 26 of 36 submissions, 72%;
Overall Acceptance Rate 109 of 221 submissions, 49%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 36
    Total Downloads
  • Downloads (Last 12 months)36
  • Downloads (Last 6 weeks)7
Reflects downloads up to 25 Nov 2024

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media