Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article
Open access

Table-GPT: Table Fine-tuned GPT for Diverse Table Tasks

Published: 30 May 2024 Publication History

Abstract

Language models, such as GPT-3 and ChatGPT, demonstrate remarkable abilities to follow diverse human instructions and perform a wide range of tasks, using instruction fine-tuning. However, when we test language models with a range of basic table-understanding tasks, we observe that today's language models are still sub-optimal in many table-related tasks, likely because they are pre-trained predominantly on one-dimensional natural-language texts, whereas relational tables are two-dimensional objects. In this work, we propose a new "\emphtable fine-tuning '' paradigm, where we continue to train/fine-tune language models like GPT-3.5 and ChatGPT, using diverse table-tasks synthesized from real tables as training data, which is analogous to "instruction fine-tuning'', but with the goal of enhancing language models' ability to understand tables and perform table tasks. We show that our resulting \sys models demonstrate: (1) better table-understanding capabilities, by consistently outperforming the vanilla GPT-3.5 and ChatGPT, on a wide range of table tasks (data transformation, data cleaning, data profiling, data imputation, table-QA, etc.), including tasks that are completely holdout and unseen during training, and (2) strong generalizability, in its ability to respond to diverse human instructions to perform new and unseen table-tasks, in a manner similar to GPT-3.5 and ChatGPT. Our code and data have been released at https://github.com/microsoft/Table-GPT for future research.

References

[1]
Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. 2023. Palm 2 technical report. arXiv preprint arXiv:2305.10403 (2023).
[2]
022)]% prompt-engineering-2, Simran Arora, Avanika Narayan, Mayee F Chen, Laurel J Orr, Neel Guha, Kush Bhatia, Ines Chami, Frederic Sala, and Christopher Ré. 2022. Ask me anything: A simple strategy for prompting language models. arXiv preprint arXiv:2210.02441 (2022).
[3]
019)]% imputation-2, Felix Biessmann, Tammo Rukat, Philipp Schmidt, Prathik Naidu, Sebastian Schelter, Andrey Taptunov, Dustin Lange, and David Salinas. 2019. DataWig: Missing Value Imputation for Tables. J. Mach. Learn. Res., Vol. 20, 175 (2019), 1--6.
[4]
020)]% llm-gpt-3, Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. Advances in neural information processing systems, Vol. 33 (2020), 1877--1901.
[5]
Michael J Cafarella, Alon Y Halevy, Yang Zhang, Daisy Zhe Wang, and Eugene Wu. 2008. Uncovering the Relational Web. In WebDB. Citeseer, 1--6.
[6]
Jieying Chen, Jia-Yu Pan, Christos Faloutsos, and Spiros Papadimitriou. 2013. TSum: fast, principled table summarization. In Proceedings of the Seventh International Workshop on Data Mining for Online Advertising. 1--9.
[7]
Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and William Yang Wang. 2019. Tabfact: A large-scale dataset for table-based fact verification. arXiv preprint arXiv:1909.02164 (2019).
[8]
Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. 2022. Palm: Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311 (2022).
[9]
Xu Chu, Yeye He, Kaushik Chakrabarti, and Kris Ganjam. 2015. Tegra: Table extraction by global record alignment. In Proceedings of the 2015 ACM SIGMOD international conference on management of data. 1713--1728.
[10]
Xu Chu, Ihab F Ilyas, Sanjay Krishnan, and Jiannan Wang. 2016. Data cleaning: Overview and emerging challenges. In Proceedings of the 2016 international conference on management of data. 2201--2206.
[11]
Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. 2022. Scaling instruction-finetuned language models. arXiv preprint arXiv:2210.11416 (2022).
[12]
Arash Dargahi Nobari and Davood Rafiei. 2024. DTT: An Example-Driven Tabular Transformer for Joinability by Leveraging Large Language Models. Proceedings of the ACM on Management of Data, Vol. 2, 1 (2024), 1--24.
[13]
Sanjib Das, AnHai Doan, Paul Suganthan G. C., Chaitanya Gokhale, Pradap Konda, Yash Govind, and Derek Paulsen. [n.,d.]. The Magellan Data Repository. https://sites.google.com/site/anhaidgroup/useful-stuff/the-magellan-data-repository?authuser=0.
[14]
Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2022. Turl: Table understanding through representation learning. ACM SIGMOD Record, Vol. 51, 1 (2022), 33--40.
[15]
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).
[16]
Till Döhmen, Hannes Mühleisen, and Peter Boncz. 2017. Multi-hypothesis CSV parsing. In Proceedings of the 29th International Conference on Scientific and Statistical Database Management. 1--12.
[17]
Hazem Elmeleegy, Jayant Madhavan, and Alon Halevy. 2009. Harvesting relational tables from lists on the web. Proceedings of the VLDB Endowment, Vol. 2, 1 (2009), 1078--1089.
[18]
Raul Castro Fernandez, Aaron J Elmore, Michael J Franklin, Sanjay Krishnan, and Chenhao Tan. 2023. How Large Language Models Will Disrupt Data Management. Proceedings of the VLDB Endowment, Vol. 16, 11 (2023), 3302--3309.
[19]
Tianyu Gao, Adam Fisch, and Danqi Chen. 2020. Making pre-trained language models better few-shot learners. arXiv preprint arXiv:2012.15723 (2020).
[20]
Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey, and Noah A Smith. 2020. Don't stop pretraining: Adapt language models to domains and tasks. arXiv preprint arXiv:2004.10964 (2020).
[21]
Braden Hancock, Hongrae Lee, and Cong Yu. 2019. Generating titles for web tables. In The World Wide Web Conference. 638--647.
[22]
William R Harris and Sumit Gulwani. 2011. Spreadsheet table transformations from examples. ACM SIGPLAN Notices, Vol. 46, 6 (2011), 317--328.
[23]
Yeye He, Xu Chu, Kris Ganjam, Yudian Zheng, Vivek Narasayya, and Surajit Chaudhuri. 2018. Transform-data-by-example (TDE) an extensible search engine for data transformations. Proceedings of the VLDB Endowment, Vol. 11, 10 (2018), 1165--1177.
[24]
Joseph M Hellerstein. 2013. Quantitative data cleaning for large databases. (2013).
[25]
Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685 (2021).
[26]
Zhipeng Huang and Yeye He. 2018. Auto-detect: Data-driven error detection in tables. In Proceedings of the 2018 International Conference on Management of Data. 1377--1392.
[27]
Madelon Hulsebos, Kevin Hu, Michiel Bakker, Emanuel Zgraggen, Arvind Satyanarayan, Tim Kraska, cC agatay Demiralp, and César Hidalgo. 2019. Sherlock: A deep learning approach to semantic data type detection. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 1500--1508.
[28]
Mohit Iyyer, Wen-tau Yih, and Ming-Wei Chang. 2017. Search-based neural structured learning for sequential question answering. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 1821--1831.
[29]
Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wrangler: Interactive visual specification of data transformation scripts. In Proceedings of the sigchi conference on human factors in computing systems. 3363--3372.
[30]
Moe Kayali, Anton Lykov, Ilias Fountalis, Nikolaos Vasiloglou, Dan Olteanu, and Dan Suciu. 2023. CHORUS: Foundation Models for Unified Data Discovery and Exploration. arXiv preprint arXiv:2306.09610 (2023).
[31]
Keti Korini and Christian Bizer. 2023. Column Type Annotation using ChatGPT. arXiv preprint arXiv:2306.00745 (2023).
[32]
Christos Koutras, George Siachamis, Andra Ionescu, Kyriakos Psarakis, Jerry Brons, Marios Fragkoulis, Christoph Lofi, Angela Bonifati, and Asterios Katsifodimos. 2021. Valentine: Evaluating matching techniques for dataset discovery. In 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE, 468--479.
[33]
Kristina Lerman, Craig Knoblock, and Steven Minton. 2001. Automatic data extraction from lists and tables in web sources. In IJCAI-2001 Workshop on Adaptive Text Extraction and Mining, Vol. 98.
[34]
Peng Li, Xiang Cheng, Xu Chu, Yeye He, and Surajit Chaudhuri. 2021. Auto-fuzzyjoin: Auto-program fuzzy similarity joins without labeled examples. In Proceedings of the 2021 international conference on management of data. 1064--1076.
[35]
Peng Li, Yeye He, Cong Yan, Yue Wang, and Surajit Chauduri. 2023 a. Auto-tables: Synthesizing multi-step transformations to relationalize tables without using examples. arXiv preprint arXiv:2307.14565 (2023).
[36]
Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Luke Zettlemoyer, Omer Levy, Jason Weston, and Mike Lewis. 2023 b. Self-Alignment with Instruction Backtranslation. arXiv preprint arXiv:2308.06259 (2023).
[37]
Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan. 2020. Deep entity matching with pre-trained language models. arXiv preprint arXiv:2004.00584 (2020).
[38]
Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. 2023. Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. Comput. Surveys, Vol. 55, 9 (2023), 1--35.
[39]
Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019).
[40]
Weizheng Lu, Jiaming Zhang, Jing Zhang, and Yueguo Chen. 2024. Large Language Model for Table Processing: A Survey. arXiv preprint arXiv:2402.05121 (2024).
[41]
Jayant Madhavan, Philip A Bernstein, and Erhard Rahm. 2001. Generic schema matching with cupid. In vldb, Vol. 1. 49--58.
[42]
Mohammad Mahdavi and Ziawasch Abedjan. 2020. Baran: Effective error correction via a unified context representation and transfer learning. Proceedings of the VLDB Endowment, Vol. 13, 12 (2020), 1948--1961.
[43]
Chris Mayfield, Jennifer Neville, and Sunil Prabhakar. 2010. ERACER: a database approach for statistical inference and data cleaning. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of data. 75--86.
[44]
Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park, Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. 2018. Deep learning for entity matching: A design space exploration. In Proceedings of the 2018 International Conference on Management of Data. 19--34.
[45]
Avanika Narayan, Ines Chami, Laurel Orr, Simran Arora, and Christopher Ré. 2022. Can foundation models wrangle your data? arXiv preprint arXiv:2205.09911 (2022).
[46]
Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022. Training language models to follow instructions with human feedback. Advances in Neural Information Processing Systems, Vol. 35 (2022), 27730--27744.
[47]
George Papadakis, Ekaterini Ioannou, Emanouil Thanos, and Themis Palpanas. 2021. The four generations of entity resolution. Springer.
[48]
Panupong Pasupat and Percy Liang. 2015. Compositional semantic parsing on semi-structured tables. arXiv preprint arXiv:1508.00305 (2015).
[49]
Ralph Peeters and Christian Bizer. 2023. Using ChatGPT for Entity Matching. arXiv preprint arXiv:2305.03423 (2023).
[50]
Erhard Rahm and Philip A Bernstein. 2001. A survey of approaches to automatic schema matching. the VLDB Journal, Vol. 10 (2001), 334--350.
[51]
Erhard Rahm, Hong Hai Do, et al. 2000. Data cleaning: Problems and current approaches. IEEE Data Eng. Bull., Vol. 23, 4 (2000), 3--13.
[52]
Theodoros Rekatsinas, Xu Chu, Ihab F Ilyas, and Christopher Ré. 2017. Holoclean: Holistic data repairs with probabilistic inference. arXiv preprint arXiv:1702.00820 (2017).
[53]
Anna Rogers, Olga Kovaleva, and Anna Rumshisky. 2021. A primer in BERTology: What we know about how BERT works. Transactions of the Association for Computational Linguistics, Vol. 8 (2021), 842--866.
[54]
Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. 2021. Multitask prompted training enables zero-shot task generalization. arXiv preprint arXiv:2110.08207 (2021).
[55]
Ananya Singha, José Cambronero, Sumit Gulwani, Vu Le, and Chris Parnin. 2023. Tabular representation, noisy operators, and impacts on table structure understanding tasks in LLMs. arXiv preprint arXiv:2310.10358 (2023).
[56]
Jie Song and Yeye He. 2021. Auto-validate: Unsupervised data validation using data-domain patterns inferred from data lakes. In Proceedings of the 2021 International Conference on Management of Data. 1678--1691.
[57]
Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang, cC aug atay Demiralp, Chen Chen, and Wang-Chiew Tan. 2022a. Annotating columns with pre-trained language models. In Proceedings of the 2022 International Conference on Management of Data. 1493--1503.
[58]
Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang, cC aug atay Demiralp, Chen Chen, and Wang-Chiew Tan. 2022b. Annotating columns with pre-trained language models. In Proceedings of the 2022 International Conference on Management of Data. 1493--1503.
[59]
Huan Sun, Hao Ma, Xiaodong He, Wen-tau Yih, Yu Su, and Xifeng Yan. 2016. Table cell search for question answering. In Proceedings of the 25th International Conference on World Wide Web. 771--782.
[60]
Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023).
[61]
Jianhong Tu, Ju Fan, Nan Tang, Peng Wang, Guoliang Li, Xiaoyong Du, Xiaofeng Jia, and Song Gao. 2023. Unicorn: A unified multi-tasking model for supporting matching tasks in data integration. Proceedings of the ACM on Management of Data, Vol. 1, 1 (2023), 1--26.
[62]
Gerrit JJ van den Burg, Alfredo Nazábal, and Charles Sutton. 2019. Wrangling messy CSV files by detecting row and type patterns. Data Mining and Knowledge Discovery, Vol. 33, 6 (2019), 1799--1820.
[63]
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems, Vol. 30 (2017).
[64]
Gerardo Vitagliano, Mazhar Hameed, Lan Jiang, Lucas Reisener, Eugene Wu, and Felix Naumann. 2023. Pollock: A Data Loading Benchmark. Proceedings of the VLDB Endowment, Vol. 16, 8 (2023), 1870--1882.
[65]
Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. 2018. GLUE: A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461 (2018).
[66]
Pei Wang and Yeye He. 2019. Uni-detect: A unified approach to automated error detection in tables. In Proceedings of the 2019 International Conference on Management of Data. 811--828.
[67]
Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. 2022c. Self-consistency improves chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171 (2022).
[68]
Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Raghavi Chandu, David Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al. 2023. How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources. arXiv preprint arXiv:2306.04751 (2023).
[69]
Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and Hannaneh Hajishirzi. 2022a. Self-instruct: Aligning language model with self generated instructions. arXiv preprint arXiv:2212.10560 (2022).
[70]
Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei, Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, et al. 2022b. Super-naturalinstructions: Generalization via declarative instructions on 1600 nlp tasks. arXiv preprint arXiv:2204.07705 (2022).
[71]
Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M Dai, and Quoc V Le. 2021. Finetuned language models are zero-shot learners. arXiv preprint arXiv:2109.01652 (2021).
[72]
Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural Information Processing Systems, Vol. 35 (2022), 24824--24837.
[73]
Tim Weninger, Fabio Fumarola, Rick Barber, Jiawei Han, and Donato Malerba. 2011. Unexpected results in automatic list extraction on the web. ACM SIGKDD Explorations Newsletter, Vol. 12, 2 (2011), 26--30.
[74]
Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C Schmidt. 2023. A prompt pattern catalog to enhance prompt engineering with chatgpt. arXiv preprint arXiv:2302.11382 (2023).
[75]
Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sqlnet: Generating structured queries from natural language without reinforcement learning. arXiv preprint arXiv:1711.04436 (2017).
[76]
Siqiao Xue, Caigao Jiang, Wenhui Shi, Fangyin Cheng, Keting Chen, Hongjun Yang, Zhiping Zhang, Jianshan He, Hongyang Zhang, Ganglin Wei, et al. 2023. Db-gpt: Empowering database interactions with private large language models. arXiv preprint arXiv:2312.17449 (2023).
[77]
Mohamed Yakout, Kris Ganjam, Kaushik Chakrabarti, and Surajit Chaudhuri. 2012. Infogather: entity augmentation and attribute discovery by holistic matching with web tables. In Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data. 97--108.
[78]
Cong Yan and Yeye He. 2018. Synthesizing type-detection logic for rich semantic data types using open-source code. In Proceedings of the 2018 International Conference on Management of Data. 35--50.
[79]
Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. 2020. TaBERT: Pretraining for joint understanding of textual and tabular data. arXiv preprint arXiv:2005.08314 (2020).
[80]
Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. 2018. Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium.
[81]
Dan Zhang, Yoshihiko Suhara, Jinfeng Li, Madelon Hulsebos, cC aug atay Demiralp, and Wang-Chiew Tan. 2019. Sato: Contextual semantic type detection in tables. arXiv preprint arXiv:1911.06311 (2019).
[82]
Haochen Zhang, Yuyang Dong, Chuan Xiao, and Masafumi Oyamada. 2023. Jellyfish: A Large Language Model for Data Preprocessing. arXiv preprint arXiv:2312.01678 (2023).
[83]
Shuo Zhang and Krisztian Balog. 2017. Entitables: Smart assistance for entity-focused tables. In Proceedings of the 40th international ACM SIGIR conference on research and development in information retrieval. 255--264.
[84]
Shuo Zhang, Zhuyun Dai, Krisztian Balog, and Jamie Callan. 2020. Summarizing and exploring tabular data in conversational search. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 1537--1540.
[85]
Chen Zhao and Yeye He. 2019. Auto-EM: End-to-end fuzzy entity-matching using pre-trained deep models and transfer learning. In The World Wide Web Conference. 2413--2424.
[86]
Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning. CoRR, Vol. abs/1709.00103 (2017).
[87]
Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu, Lili Yu, et al. 2023. Lima: Less is more for alignment. arXiv preprint arXiv:2305.11206 (2023).
[88]
Erkang Zhu, Yeye He, and Surajit Chaudhuri. 2017. Auto-join: Joining tables by leveraging transformations. Proceedings of the VLDB Endowment, Vol. 10, 10 (2017), 1034--1045. io

Cited By

View all
  • (2024)Matching Tabular Data to Knowledge Graph with Effective Core Column Set Discovery.ACM Transactions on the Web10.1145/369497918:4(1-27)Online publication date: 8-Oct-2024
  • (2024)IterClean: An Iterative Data Cleaning Framework with Large Language ModelsProceedings of the ACM Turing Award Celebration Conference - China 202410.1145/3674399.3674436(100-105)Online publication date: 5-Jul-2024
  • (2024)Graph Neural Network Approach to Semantic Type Detection in TablesAdvances in Knowledge Discovery and Data Mining10.1007/978-981-97-2266-2_10(121-133)Online publication date: 25-Apr-2024

Index Terms

  1. Table-GPT: Table Fine-tuned GPT for Diverse Table Tasks

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Proceedings of the ACM on Management of Data
    Proceedings of the ACM on Management of Data  Volume 2, Issue 3
    SIGMOD
    June 2024
    1953 pages
    EISSN:2836-6573
    DOI:10.1145/3670010
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 30 May 2024
    Published in PACMMOD Volume 2, Issue 3

    Permissions

    Request permissions for this article.

    Author Tags

    1. instruction fine-tuning
    2. language models
    3. model generalizability
    4. multi-task training
    5. synthesized training data
    6. table fine-tuning
    7. table models
    8. table tasks
    9. unseen tasks

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)1,103
    • Downloads (Last 6 weeks)315
    Reflects downloads up to 17 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Matching Tabular Data to Knowledge Graph with Effective Core Column Set Discovery.ACM Transactions on the Web10.1145/369497918:4(1-27)Online publication date: 8-Oct-2024
    • (2024)IterClean: An Iterative Data Cleaning Framework with Large Language ModelsProceedings of the ACM Turing Award Celebration Conference - China 202410.1145/3674399.3674436(100-105)Online publication date: 5-Jul-2024
    • (2024)Graph Neural Network Approach to Semantic Type Detection in TablesAdvances in Knowledge Discovery and Data Mining10.1007/978-981-97-2266-2_10(121-133)Online publication date: 25-Apr-2024

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Full Access

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media