Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3653081.3653192acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiotaaiConference Proceedingsconference-collections
research-article

Lane-Aware Transformers for Multi-Agent Trajectory Prediction

Published: 03 May 2024 Publication History

Abstract

For autonomous driving vehicles, accurately predicting the future trajectories of interactive road agents and planning a trajectory that complies with societal requirements and resembles human-like behavior is extremely important. Existing multi-vehicle trajectory prediction methods have redundancy when dealing with multi-agent scenarios, that is, they repeatedly encode invariant scenes around each vehicle, such as lane lines, which leads to increased delays in the model's reasoning. To solve this problem, we propose a novel multi-agent trajectory prediction model based on space-time Transformer. The model models a driving scene as a heterogeneous graph with nodes representing traffic participants or road elements and edges representing semantic relationships between them. In terms of spatial relation coding, the coordinate information of nodes and their edges is no longer set in a fixed global reference system, but transformed into a node-centered local coordinate system. The final model can predict both the target lane segment and the corresponding future trajectory of the agent. Our extensive experiments on the Argoverse real dataset confirm that our algorithm not only works, but also has high accuracy.

References

[1]
Gu, J., Sun, C., & Zhao, H. 2021. Densetnt: End-to-end trajectory prediction from dense goal sets. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 15303-15312).
[2]
Zhao, H., Gao, J., Lan, T., Sun, C., Sapp, B., Varadarajan, B., ... & Anguelov, D. 2021, October. Tnt: Target-driven trajectory prediction. In Conference on Robot Learning (pp. 895-904). PMLR.
[3]
Ngiam, J., Caine, B., Vasudevan, V., Zhang, Z., Chiang, H. T. L., Ling, J., ... & Shlens, J. 2021. Scene transformer: A unified architecture for predicting multiple agent trajectories. arXiv preprint arXiv:2106.08417.
[4]
Varadarajan, B., Hefny, A., Srivastava, A., Refaat, K. S., Nayakanti, N., Cornman, A., ... & Sapp, B. 2022, May. Multipath++: Efficient information fusion and trajectory aggregation for behavior prediction. In 2022 International Conference on Robotics and Automation (ICRA) (pp. 7814-7821). IEEE.
[5]
Sun, Q., Huang, X., Gu, J., Williams, B. C., & Zhao, H. 2022. M2i: From factored marginal trajectory prediction to interactive prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 6543-6552).
[6]
Zhou, Z., Ye, L., Wang, J., Wu, K., & Lu, K. 2022. Hivt: Hierarchical vector transformer for multi-agent motion prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 8823-8833).
[7]
Gao, J., Sun, C., Zhao, H., Shen, Y., Anguelov, D., Li, C., & Schmid, C. 2020. Vectornet: Encoding hd maps and agent dynamics from vectorized representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 11525-11533).
[8]
Liang, M., Yang, B., Hu, R., Chen, Y., Liao, R., Feng, S., & Urtasun, R. 2020. Learning lane graph representations for motion forecasting. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16 (pp. 541-556). Springer International Publishing.
[9]
Argoverse motion forecasting competition. https:// eval . ai / web / challenges / challenge - page / 454/overview. Accessed: 2021, 11, 16. 7
[10]
Gilles, T., Sabatini, S., Tsishkou, D., Stanciulescu, B., & Moutarde, F. 2022, May. Gohome: Graph-oriented heatmap output for future motion estimation. In 2022 international conference on robotics and automation (ICRA) (pp. 9107-9114). IEEE.
[11]
Chai, Y., Sapp, B., Bansal, M., & Anguelov, D. 2019. Multipath: Multiple probabilistic anchor trajectory hypotheses for behavior prediction. arXiv preprint arXiv:1910.05449.
[12]
Ye, M., Cao, T., & Chen, Q. 2021. Tpcn: Temporal point cloud networks for motion forecasting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 11318-11327).
[13]
Ye, M., Xu, J., Xu, X., Wang, T., Cao, T., & Chen, Q. 2022. Dcms: Motion forecasting with dual consistency and multi-pseudo-target supervision. arXiv preprint arXiv:2204.05859.
[14]
Qi, C. R., Yi, L., Su, H., & Guibas, L. J. 2017. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Advances in neural information processing systems, 30.
[15]
Jia, X., Wu, P., Chen, L., Liu, Y., Li, H., & Yan, J. 2023. Hdgt: Heterogeneous driving graph transformer for multi-agent trajectory prediction via scene encoding. IEEE transactions on pattern analysis and machine intelligence.
[16]
Li, X., Ying, X., & Chuah, M. C. 2019, October. Grip: Graph-based interaction-aware trajectory prediction. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC) (pp. 3960-3966). IEEE.
[17]
Jeon, H., Choi, J., & Kum, D. 2020, October. Scale-net: Scalable vehicle trajectory prediction network under random number of interacting vehicles via edge-enhanced graph convolutional neural network. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2095-2102). IEEE.
[18]
Zhou, Z., Wang, J., Li, Y. H., & Huang, Y. K. 2023. Query-Centric Trajectory Prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 17863-17873).
[19]
Zhou, Z., Ye, L., Wang, J., Wu, K., & Lu, K. 2022. Hivt: Hierarchical vector transformer for multi-agent motion prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 8823-8833).
[20]
Eltoft, T., Kim, T., & Lee, T. W. 2006. On the multivariate Laplace distribution. IEEE Signal Processing Letters, 13(5), 300-303.

Index Terms

  1. Lane-Aware Transformers for Multi-Agent Trajectory Prediction

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    IoTAAI '23: Proceedings of the 2023 5th International Conference on Internet of Things, Automation and Artificial Intelligence
    November 2023
    902 pages
    ISBN:9798400716485
    DOI:10.1145/3653081
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 03 May 2024

    Permissions

    Request permissions for this article.

    Check for updates

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    IoTAAI 2023

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 25
      Total Downloads
    • Downloads (Last 12 months)25
    • Downloads (Last 6 weeks)4
    Reflects downloads up to 13 Feb 2025

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media