Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3641825.3687710acmconferencesArticle/Chapter ViewAbstractPublication PagesvrstConference Proceedingsconference-collections
research-article
Open access

Interactive Multi-GPU Light Field Path Tracing Using Multi-Source Spatial Reprojection

Published: 09 October 2024 Publication History

Abstract

Path tracing combined with multiview displays enables progress towards achieving ultrarealistic virtual reality. However, multiview displays based on light field technology impose a heavy workload for real-time graphics due to the large number of views to be rendered. In order to achieve low latency performance, computational effort can be reduced by path tracing only some views (source views), and synthesizing the remaining views (target views) through spatial reprojection, which reuses path traced pixels from source views to target views. Deciding the number of source views with respect to the computational resources is not trivial, since spatial reprojection introduces dependencies in the otherwise trivially parallel rendering pipeline and path tracing multiple source views increases the computation time.
In this paper, we demonstrate how to reach near-perfect linear multi-GPU scalability through a coarse-grained distribution of the light field path tracing workload. Our multi-source method path traces a single source view per GPU, which helps decreasing the number of dependencies. Reducing dependencies reduces the overhead of image transfers and G-Buffers rasterization used for spatial reprojection. In a node of 4 × RTX A6000 GPUs, given 4 source views, we reach a light field rendering frequency of 3–19 Hz, which corresponds to interactive rate. On four test scenes, we outperform state-of-the-art multi-GPU light field path tracing pipelines, achieving a speedup of 1.65 × up to 4.63 × for 1D light fields of dimension 100 × 1, each view having a resolution of 768 × 432, and 1.51 × up to 3.39 × for 2D stereo near-eye light fields of size 12 × 6 (left eye: 6 × 6 views and right eye: 6 × 6 views), 1024 × 1024 per view.

References

[1]
S.J. Adelson and L.F. Hodges. 1995. Generating exact ray-traced animation frames by reprojection. IEEE Computer Graphics and Applications 15, 3 (1995).
[2]
Joel Alanko, Markku Mäkitalo, and Pekka Jääskeläinen. 2022. TauBench: Dynamic benchmark for graphics rendering. In INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS THEORY AND APPLICATIONS.
[3]
Magnus Andersson, Björn Johnsson, Jacob Munkberg, Petrik Clarberg, Jon Hasselgren, and Tomas Akenine-Möller. 2011. Efficient multi-view ray tracing using edge detection and shader reuse. The Visual Computer 27 (2011).
[4]
Dietger van Antwerpen, Daniel Seibert, and Alexander Keller. 2019. A simple load-balancing scheme with high scaling efficiency. In Ray Tracing Gems. https://www.realtimerendering.com/raytracinggems
[5]
Tim Biedert, Peter Messmer, Thomas Fogal, and Christoph Garth. 2018. Hardware-Accelerated Multi-Tile Streaming for Realtime Remote Visualization. In Eurographics Symposium on Parallel Graphics and Visualization, Hank Childs and Fernando Cucchietti (Eds.).
[6]
Suyeon Choi, Manu Gopakumar, Yifan Peng, Jonghyun Kim, Matthew O’Toole, and Gordon Wetzstein. 2022. Time-multiplexed Neural Holography: A Flexible Framework for Holographic Near-eye Displays with Fast Heavily-quantized Spatial Light Modulators. In ACM SIGGRAPH 2022 Conference Proceedings. New York, NY, USA. https://doi.org/10.1145/3528233.3530734
[7]
Robert L. Cook. 1986. Stochastic Sampling in Computer Graphics. ACM Trans. Graph. 5, 1 (jan 1986).
[8]
Zvi Drezner and Horst W Hamacher. 2004. Facility location: applications and theory.
[9]
Basile Fraboni, Antoine Webanck, Nicolas Bonneel, and Jean-Claude Iehl. 2022. Volumetric Multi-View Rendering. Computer Graphics Forum 41, 2 (2022).
[10]
Iliyan Georgiev, Thiago Ize, Mike Farnsworth, Ramón Montoya-Vozmediano, Alan King, Brecht Van Lommel, Angel Jimenez, Oscar Anson, Shinji Ogaki, Eric Johnston, 2018. Arnold: A brute-force production path tracer. ACM Trans. Graph. 37, 3 (2018).
[11]
Manu Gond, Emin Zerman, Sebastian Knorr, and Mårten Sjöström. 2023. LFSphereNet: Real Time Spherical Light Field Reconstruction from a Single Omnidirectional Image. In Proceedings of the 20th ACM SIGGRAPH European Conference on Visual Media Production (London, UK) (CVMP ’23). New York, NY, USA, Article 10. https://doi.org/10.1145/3626495.3626500
[12]
Ugur Gudelek, Erdem Sahin, and Atanas Gotchev. 2023. Perceptually Optimized Model for Near-Eye Light Field Reconstruction. In 2023 IEEE 25th International Workshop on Multimedia Signal Processing (MMSP). https://doi.org/10.1109/MMSP59012.2023.10337716
[13]
Anne Juhler Hansen, Jákup Klein, and Martin Kraus. 2017. Light Field Rendering for Head Mounted Displays using Pixel Reprojection. In VISIGRAPP (1: GRAPP).
[14]
Hong Hua. 2017. Enabling focus cues in head-mounted displays. In Imaging and Applied Optics 2017 (3D, AIO, COSI, IS, MATH, pcAOP). Optica Publishing Group.
[15]
Julius Ikkala, Markku Mäkitalo, Tuomas Lauttia, Erwan Leria, and Pekka Jääskeläinen. 2022. Tauray: A Scalable Real-Time Open-Source Path Tracer for Stereo and Light Field Displays. In SIGGRAPH Asia 2022 Technical Communications (Daegu, Republic of Korea) (SA ’22). New York, NY, USA, Article 11. https://doi.org/10.1145/3550340.3564225
[16]
James T. Kajiya. 1986. The Rendering Equation. SIGGRAPH Comput. Graph. 20, 4 (Aug. 1986). https://doi.org/10.1145/15886.15902
[17]
Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ramamoorthi. 2016. Learning-based view synthesis for light field cameras. ACM Trans. Graph. 35, 6, Article 193 (dec 2016). https://doi.org/10.1145/2980179.2980251
[18]
Leonard Kaufman and Peter J. Rousseeuw. 1987. Partitioning Around Medoids (Program PAM). Finding Groups in Data: An Introduction to Cluster Analysis (1987).
[19]
Dongyeon Kim, Seung-Woo Nam, Suyeon Choi, Jong-Mo Seo, Gordon Wetzstein, and Yoonchan Jeong. 2024. Holographic Parallax Improves 3D Perceptual Realism. ACM Trans. Graph. 43, 4, Article 68 (jul 2024), 13 pages. https://doi.org/10.1145/3658168
[20]
Gregory Kramida. 2016. Resolving the Vergence-Accommodation Conflict in Head-Mounted Displays. IEEE Transactions on Visualization and Computer Graphics 22, 7 (2016).
[21]
Wallace Lages, Carlúcio Cordeiro, and Dorgival Guedes. 2008. A Parallel Multi-view Rendering Architecture. In 2008 XXI Brazilian Symposium on Computer Graphics and Image Processing. https://doi.org/10.1109/SIBGRAPI.2008.41
[22]
Wallace Lages, Carlúcio Cordeiro, and Dorgival Guedes. 2009. Performance analysis of a parallel multi-view rendering architecture using light fields. The Visual Computer 25, 10 (2009).
[23]
Leonardo Lanante Jr.2023. Wi-Fi 8: Ultra High Reliability in the Unlicensed Bands. Ofinno (2023). https://ofinno.com/whitepaper/wi-fi-8-ultra-high-reliability-in-the-unlicensed-bands/
[24]
Douglas Lanman and David Luebke. 2013. Near-Eye Light Field Displays. ACM Trans. Graph. 32, 6, Article 220 (nov 2013).
[25]
Grigory Lazarev, Andreas Hermerschmidt, Sven Krüger, and Stefan Osten. 2012. LCOS spatial light modulators: trends and applications. Optical Imaging and Metrology: Advanced Technologies (2012).
[26]
Erwan Leria, Markku Mäkitalo, and Pekka Jääskeläinen. 2024. Real-time Stereoscopic Image-parallel Path Tracing. Electronic Imaging 36, 13 (2024). https://doi.org/10.2352/EI.2024.36.13.ERVR-181
[27]
Xue Liu, Xinzhu Sang, Xiao Guo, Shujun Xing, Yuanhang Li, Jinhui Yuan, and Binbin Yan. 2021. Real-time Super High Resolution Light Field Rendering with Multi-GPU Scheduling. In 2021 Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS).
[28]
Amazon Lumberyard. 2017. Amazon Lumberyard Bistro, Open Research Content Archive (ORCA). http://developer.nvidia.com/orca/amazon-lumberyard-bistro
[29]
Markku Mäkitalo, Erwan Leria, Julius Ikkala, and Pekka Jääskeläinen. 2023. Real-Time Light Field Path Tracing. In Advances in Computer Graphics: 39th Computer Graphics International Conference, CGI 2022, Virtual Event, September 12–16, 2022, Proceedings. Springer-Verlag, Berlin, Heidelberg, 211–226. https://doi.org/10.1007/978-3-031-23473-6_17
[30]
Markku J Mäkitalo, Petrus EJ Kivi, and Pekka O Jääskeläinen. 2020. Systematic Evaluation of the Quality Benefits of Spatiotemporal Sample Reprojection in Real-Time Stereoscopic Path Tracing. IEEE Access 8 (2020).
[31]
Natalia D Mankowska, Anna B Marcinkowska, Monika Waskow, Rita I Sharma, Jacek Kot, and Pawel J Winklewski. 2021. Critical flicker fusion frequency: a narrative review. Medicina 57, 10 (2021), 1096.
[32]
Morgan McGuire. 2017. Computer Graphics Archive.
[33]
Yuta Miyanishi, Erdem Sahin, and Atanas Gotchev. 2019. Providing focus cues by light field displays: A review. In European Light Field Imaging Workshop.
[34]
Steven Molnar, Michael Cox, David Ellsworth, and Henry Fuchs. 1994. A sorting classification of parallel rendering. IEEE Computer Graphics and Applications 14, 4 (1994).
[35]
Carl Mueller. 1995. The Sort-First Rendering Architecture for High-Performance Graphics. In Proceedings of the 1995 Symposium on Interactive 3D Graphics (Monterey, California, USA) (I3D ’95). New York, NY, USA. https://doi.org/10.1145/199404.199417
[36]
Seung-Woo Nam, Dongyeon Kim, Suyeon Choi, Juhyun Lee, Siwoo Lee, Manu Gopakumar, Brian Chao, Gordon Wetzstein, and Yoonchan Jeong. 2024. Holographic Parallax. In ACM SIGGRAPH 2024 Emerging Technologies (Denver, CO, USA) (SIGGRAPH ’24). Association for Computing Machinery, New York, NY, USA, Article 11, 2 pages. https://doi.org/10.1145/3641517.3664386
[37]
M. Okutomi and T. Kanade. 1993. A multiple-baseline stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 4 (1993), 353–363. https://doi.org/10.1109/34.206955
[38]
Hyungman Park, Donald Fussell, and Paul Navrátil. 2022. Data-Aware Predictive Scheduling for Distributed-Memory Ray Tracing. IEEE Transactions on Visualization and Computer Graphics 28, 1 (2022). https://doi.org/10.1109/TVCG.2021.3114838
[39]
Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering: From Theory to Implementation (3rd ed.).
[40]
Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty R Alla Chaitanya, John Burgess, Shiqiu Liu, Carsten Dachsbacher, Aaron Lefohn, and Marco Salvi. 2017. Spatiotemporal variance-guided filtering: real-time reconstruction for path-traced global illumination. In Proceedings of High Performance Graphics.
[41]
Elena Vasiou, Konstantin Shkurko, Ian Mallett, Erik Brunvand, and Cem Yuksel. 2018. A detailed study of ray tracing performance: render time and energy cost. The Visual Computer 34 (2018). https://api.semanticscholar.org/CorpusID:253894140
[42]
Jakub Žádník, Markku Mäkitalo, Jarno Vanne, and Pekka Jääskeläinen. 2022. Image and Video Coding Techniques for Ultra-low Latency. ACM Comput. Surv. 54, 11s, Article 231 (sep 2022), 35 pages. https://doi.org/10.1145/3512342
[43]
Ingo Wald, Milan Jaroš, and Stefan Zellmann. 2023. Data Parallel Multi-GPU Path Tracing using Ray Queue Cycling. In Computer Graphics Forum, Vol. 42.
[44]
Hayato Watanabe, Takuya Omura, Naoto Okaichi, Masanori Kano, Hisayuki Sasaki, and Jun Arai. 2022. Full-parallax three-dimensional display based on light field reproduction. Optical Review 29 (2022), 366 – 374. https://api.semanticscholar.org/CorpusID:250251859
[45]
Alfred Weber. 1909. Theory of industrial location. San José State University Department of Economics: San Jose, CA, USA (1909).
[46]
Alexander Weinrauch, Stephan Lorbek, Wolfgang Tatzgern, Pascal Stadlbauer, and Markus Steinberger. 2023. Clouds in the Cloud: Efficient Cloud-Based Rendering of Real-Time Volumetric Clouds. In High-Performance Graphics - Symposium Papers, Jacco Bikker and Christiaan Gribble (Eds.). https://doi.org/10.2312/hpg.20231138
[47]
Endre Weiszfeld. 1937. Sur le point pour lequel la Somme des distances de n points donnés est minimum. Tohoku Mathematical Journal, First Series 43 (1937).
[48]
Niko Wißmann, Martin Mišiak, Arnulph Fuhrmann, and Marc Erich Latoschik. 2020. Accelerated stereo rendering with hybrid reprojection-based rasterization and adaptive ray-tracing. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).
[49]
Lei Xiao, Anton Kaplanyan, Alexander Fix, Matthew Chapman, and Douglas Lanman. 2018. DeepFocus: learned image synthesis for computational displays. ACM Trans. Graph. 37, 6, Article 200 (dec 2018). https://doi.org/10.1145/3272127.3275032
[50]
Feng Xie, Petro Mishchuk, and Warren Hunt. 2021. Real Time Cluster Path Tracing. In SIGGRAPH Asia 2021 Technical Communications (Tokyo, Japan) (SA ’21 Technical Communications). New York, NY, USA, Article 18. https://doi.org/10.1145/3478512.3488605
[51]
Erfan Momeni Yazdi, Markku Mäkitalo, Julius Ikkala, and Pekka Jääskeläinen. 2023. TauBench 1.1: A Dynamic Benchmark for Graphics Rendering. arxiv:2305.04804 [cs.GR]
[52]
Stefan Zellmann, Nate Morrical, Ingo Wald, and Valerio Pascucci. 2020. Finding Efficient Spatial Distributions for Massively Instanced 3-D Models. In Eurographics Symposium on Parallel Graphics and Visualization, Steffen Frey, Jian Huang, and Filip Sadlo (Eds.). https://doi.org/10.2312/pgv.20201070

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
VRST '24: Proceedings of the 30th ACM Symposium on Virtual Reality Software and Technology
October 2024
633 pages
ISBN:9798400705359
DOI:10.1145/3641825
This work is licensed under a Creative Commons Attribution International 4.0 License.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 09 October 2024

Check for updates

Author Tags

  1. Dependencies
  2. Multiview
  3. Parallel Rendering
  4. View Synthesis

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

  • European Union?s Horizon 2020 research and innovation programme

Conference

VRST '24

Acceptance Rates

Overall Acceptance Rate 66 of 254 submissions, 26%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 159
    Total Downloads
  • Downloads (Last 12 months)159
  • Downloads (Last 6 weeks)42
Reflects downloads up to 13 Feb 2025

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Login options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media