Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3641519.3657467acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

Soft Pneumatic Actuator Design using Differentiable Simulation

Published: 13 July 2024 Publication History

Abstract

We propose a computational design pipeline for pneumatically-actuated soft robots interacting with their environment through contact. We optimize the shape of the robot with a shape optimization approach, using a physically-accurate high-order finite element model for the forward simulation. Our approach enables fine-grained control over both deformation and contact forces by optimizing the shape of internal cavities, which we exploit to design pneumatically-actuated robots that can assume user-prescribed poses, or apply user-controlled forces. We demonstrate the efficacy of our method on two artistic and two functional examples.

Supplemental Material

MP4 File
Presentation Video
PDF File
Supplemental Material

References

[1]
Moritz Bächer, Espen Knoop, and Christian Schumacher. 2021. Design and Control of Soft Robots Using Differentiable Simulation. Current Robotics Reports 2 (06 2021). https://doi.org/10.1007/s43154-021-00052-7
[2]
Pierre Baque, Edoardo Remelli, Francois Fleuret, and Pascal Fua. 2018. Geodesic Convolutional Shape Optimization. In Proceedings of the 35th International Conference on Machine Learning(Proceedings of Machine Learning Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, 472–481. https://proceedings.mlr.press/v80/baque18a.html
[3]
P. Beremlijski, J. Haslinger, J. Outrata, and R. Pathó. 2014. Shape Optimization in Contact Problems with Coulomb Friction and a Solution-Dependent Friction Coefficient. SIAM Journal on Control and Optimization 52, 5 (Jan. 2014), 3371–3400. https://doi.org/10.1137/130948070
[4]
James Bern, Pol Banzet, Roi Poranne, and Stelian Coros. 2019. Trajectory Optimization for Cable-Driven Soft Robot Locomotion. In Robotics: Science and Systems XV, Vol. 1. Robotics: Science and Systems Foundation. https://doi.org/10.15607/rss.2019.xv.052
[5]
James M. Bern, Kai-Hung Chang, and Stelian Coros. 2017. Interactive Design of Animated Plushies. ACM Trans. Graph. 36, 4, Article 80 (jul 2017), 11 pages. https://doi.org/10.1145/3072959.3073700
[6]
James M. Bern, Yannick Schnider, Pol Banzet, Nitish Kumar, and Stelian Coros. 2020. Soft Robot Control With a Learned Differentiable Model. In 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft). IEEE, 417–423. https://doi.org/10.1109/robosoft48309.2020.9116011
[7]
J. Bonet, R.D. Wood, J. Mahaney, and P. Heywood. 2000. Finite element analysis of air supported membrane structures. Computer Methods in Applied Mechanics and Engineering 190, 5 (2000), 579–595. https://doi.org/10.1016/S0045-7825(99)00428-4
[8]
Michael Chang, Tomer Ullman, Antonio Torralba, and Joshua Tenenbaum. 2017. A Compositional Object-Based Approach to Learning Physical Dynamics. In International Conference on Learning Representations. https://openreview.net/forum?id=Bkab5dqxe
[9]
Feifei Chen and Michael Yu Wang. 2020. Design optimization of soft robots: A review of the state of the art. IEEE Robotics & Automation Magazine 27, 4 (2020), 27–43.
[10]
Alban de Vaucorbeil, Vinh Phu Nguyen, Sina Sinaie, and Jian Ying Wu. 2019. Material point method after 25 years: theory, implementation and applications. Submitted to Advances in Applied Mechanics (2019), 1.
[11]
Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Spielberg, Daniela Rus, and Wojciech Matusik. 2021. DiffPD: Differentiable Projective Dynamics. ACM Trans. Graph. 41, 2, Article 13 (nov 2021), 21 pages. https://doi.org/10.1145/3490168
[12]
Zachary Ferguson, Pranav Jain, Denis Zorin, Teseo Schneider, and Daniele Panozzo. 2023. High-Order Incremental Potential Contact for Elastodynamic Simulation on Curved Meshes. In ACM SIGGRAPH 2023 Conference Proceedings (Los Angeles, CA, USA) (SIGGRAPH ’23). Association for Computing Machinery, New York, NY, USA, 11 pages.
[13]
Konstantinos Gavriil, Ruslan Guseinov, Jesús Pérez, Davide Pellis, Paul Henderson, Florian Rist, Helmut Pottmann, and Bernd Bickel. 2020. Computational Design of Cold Bent Glass FaçAdes. ACM Trans. Graph. 39, 6, Article 208 (nov 2020), 16 pages. https://doi.org/10.1145/3414685.3417843
[14]
Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Bächer, Bernhard Thomaszewski, and Stelian Coros. 2020. ADD: analytically differentiable dynamics for multi-body systems with frictional contact. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1–15.
[15]
Olivier Goury and Christian Duriez. 2018. Fast, Generic, and Reliable Control and Simulation of Soft Robots Using Model Order Reduction. IEEE Transactions on Robotics 34, 6 (2018), 1565–1576. https://doi.org/10.1109/TRO.2018.2861900
[16]
Christian Hafner, Christian Schumacher, Espen Knoop, Thomas Auzinger, Bernd Bickel, and Moritz Bächer. 2019. X-CAD: Optimizing CAD Models with Extended Finite Elements. ACM Trans. Graph. 38, 6, Article 157 (Nov. 2019), 15 pages. https://doi.org/10.1145/3355089.3356576
[17]
David Hahn, Pol Banzet, James M. Bern, and Stelian Coros. 2019. Real2Sim: Visco-Elastic Parameter Estimation from Dynamic Motion. ACM Trans. Graph. 38, 6, Article 236 (Nov. 2019), 13 pages. https://doi.org/10.1145/3355089.3356548
[18]
M. Haßler and K. Schweizerhof. 2008. On the static interaction of fluid and gas loaded multi-chamber systems in large deformation finite element analysis. Computer Methods in Applied Mechanics and Engineering 197, 19 (2008), 1725–1749. https://doi.org/10.1016/j.cma.2007.08.028 Computational Methods in Fluid–Structure Interaction.
[19]
Eric Heiden, Miles Macklin, Yashraj S Narang, Dieter Fox, Animesh Garg, and Fabio Ramos. 2021. DiSECt: A Differentiable Simulation Engine for Autonomous Robotic Cutting. In Proceedings of Robotics: Science and Systems. Virtual. https://doi.org/10.15607/RSS.2021.XVII.067
[20]
Eric Heiden, David Millard, Erwin Coumans, Yizhou Sheng, and Gaurav S Sukhatme. 2020. NeuralSim: Augmenting Differentiable Simulators with Neural Networks. arXiv preprint arXiv:2011.04217 (2020).
[21]
Shayan Hoshyari, Hongyi Xu, Espen Knoop, Stelian Coros, and Moritz Bächer. 2019. Vibration-Minimizing Motion Retargeting for Robotic Characters. ACM Trans. Graph. 38, 4, Article 102 (July 2019), 14 pages. https://doi.org/10.1145/3306346.3323034
[22]
Jerry Hsu, Nghia Truong, Cem Yuksel, and Kui Wu. 2022. A General Two-Stage Initialization for Sag-Free Deformable Simulations. ACM Trans. Graph. 41, 4, Article 64 (jul 2022), 13 pages. https://doi.org/10.1145/3528223.3530165
[23]
Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and Fredo Durand. 2019a. DiffTaichi: Differentiable Programming for Physical Simulation. In International Conference on Learning Representations.
[24]
Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B Tenenbaum, William T Freeman, Jiajun Wu, Daniela Rus, and Wojciech Matusik. 2019b. Chainqueen: A real-time differentiable physical simulator for soft robotics. In 2019 International conference on robotics and automation (ICRA). IEEE, 6265–6271.
[25]
Yixin Hu, Teseo Schneider, Bolun Wang, Denis Zorin, and Daniele Panozzo. 2020. Fast Tetrahedral Meshing in the Wild. ACM Trans. Graph. 39, 4, Article 117 (July 2020), 18 pages. https://doi.org/10.1145/3386569.3392385
[26]
Zizhou Huang, Davi Colli Tozoni, Arvi Gjoka, Zachary Ferguson, Teseo Schneider, Daniele Panozzo, and Denis Zorin. 2023. Differentiable solver for time-dependent deformation problems with contact. arxiv:2205.13643 [cs.GR]
[27]
Filip Ilievski, Aaron D. Mazzeo, Robert F. Shepherd, Xin Chen, and George M. Whitesides. 2011. Soft Robotics for Chemists. Angewandte Chemie 123, 8 (2011), 1930–1935. https://doi.org/10.1002/ange.201006464
[28]
Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. 2011a. Bounded Biharmonic Weights for Real-Time Deformation. ACM Transactions on Graphics (proceedings of ACM SIGGRAPH) 30, 4 (2011), 78:1–78:8.
[29]
Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. 2011b. Bounded Biharmonic Weights for Real-Time Deformation. ACM Trans. Graph. 30, 4, Article 78 (jul 2011), 8 pages. https://doi.org/10.1145/2010324.1964973
[30]
Krishna Murthy Jatavallabhula, Miles Macklin, Florian Golemo, Vikram Voleti, Linda Petrini, Martin Weiss, Breandan Considine, Jerome Parent-Levesque, Kevin Xie, Kenny Erleben, Liam Paull, Florian Shkurti, Derek Nowrouzezahrai, and Sanja Fidler. 2021. gradSim: Differentiable simulation for system identification and visuomotor control. International Conference on Learning Representations (ICLR) (2021). https://openreview.net/forum?id=c_E8kFWfhp0
[31]
C. Kane, Jerrold E. Marsden, Michael Ortiz, and Matthew West. 2000. Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems. Internat. J. Numer. Methods Engrg. 49 (2000), 1295–1325. https://api.semanticscholar.org/CorpusID:1681067
[32]
Robert Katzschmann, Joseph DelPreto, Robert MacCurdy, and Daniela Rus. 2018. Exploration of underwater life with an acoustically controlled soft robotic fish. Science Robotics 3 (03 2018), eaar3449. https://doi.org/10.1126/scirobotics.aar3449
[33]
Cecilia Laschi, Matteo Cianchetti, Barbara Mazzolai, Laura Margheri, Maurizio Follador, and Paolo Dario. 2012. Soft Robot Arm Inspired by the Octopus. Advanced Robotics 26, 7 (Jan. 2012), 709–727. https://doi.org/10.1163/156855312x626343
[34]
F. Lekien and J. Marsden. 2005. Tricubic interpolation in three dimensions. Internat. J. Numer. Methods Engrg. 63, 3 (2005), 455–471. https://doi.org/10.1002/nme.1296
[35]
Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental Potential Contact: Intersection- and Inversion-free Large Deformation Dynamics. ACM Trans. Graph. (SIGGRAPH) 39, 4, Article 50 (2020).
[36]
Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2023b. Convergent Incremental Potential Contact. arxiv:2307.15908 [math.NA]
[37]
Yue Li, Stelian Coros, and Bernhard Thomaszewski. 2023a. Neural Metamaterial Networks for Nonlinear Material Design. ACM Trans. Graph. 42, 6, Article 186 (dec 2023), 13 pages. https://doi.org/10.1145/3618325
[38]
Yifei Li, Tao Du, Kui Wu, Jie Xu, and Wojciech Matusik. 2022. DiffCloth: Differentiable Cloth Simulation with Dry Frictional Contact. ACM Trans. Graph. (mar 2022). https://doi.org/10.1145/3527660 Just Accepted.
[39]
Junbang Liang, Ming Lin, and Vladlen Koltun. 2019. Differentiable cloth simulation for inverse problems. Neural Information Processing Systems (2019).
[40]
Yang Liu and Michael Yu Wang. 2014. Topology design of a conforming gripper with distributed compliance via a level set method. In 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014). 2191–2196. https://doi.org/10.1109/ROBIO.2014.7090662
[41]
Yiyue Luo, Kui Wu, Andrew Spielberg, Michael Foshey, Daniela Rus, Tomás Palacios, and Wojciech Matusik. 2022. Digital Fabrication of Pneumatic Actuators with Integrated Sensing by Machine Knitting. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22). Association for Computing Machinery, New York, NY, USA, Article 175, 13 pages. https://doi.org/10.1145/3491102.3517577
[42]
Mickaël Ly, Romain Casati, Florence Bertails-Descoubes, Mélina Skouras, and Laurence Boissieux. 2018. Inverse Elastic Shell Design with Contact and Friction. ACM Trans. Graph. 37, 6, Article 201 (dec 2018), 16 pages. https://doi.org/10.1145/3272127.3275036
[43]
Li-Ke Ma, Yizhonc Zhang, Yang Liu, Kun Zhou, and Xin Tong. 2017. Computational Design and Fabrication of Soft Pneumatic Objects with Desired Deformations. 36, 6, Article 239 (nov 2017), 12 pages. https://doi.org/10.1145/3130800.3130850
[44]
Juan Montes Maestre, Ronan Hinchet, Stelian Coros, and Bernhard Thomaszewski. 2023. ToRoS: A Topology Optimization Approach for Designing Robotic Skins. ACM Trans. Graph. 42, 6, Article 194 (dec 2023), 11 pages. https://doi.org/10.1145/3618382
[45]
Liane Makatura, Bohan Wang, Yi-Lu Chen, Bolei Deng, Chris Wojtan, Bernd Bickel, and Wojciech Matusik. 2023. Procedural Metamaterials: A Unified Procedural Graph for Metamaterial Design. ACM Trans. Graph. 42, 5, Article 168 (jul 2023), 19 pages. https://doi.org/10.1145/3605389
[46]
Guirec Maloisel, Espen Knoop, Christian Schumacher, and Moritz Bacher. 2021. Automated Routing of Muscle Fibers for Soft Robots. IEEE Trans. Robot. 37, 3 (June 2021), 996–1008. https://doi.org/10.1109/tro.2020.3043654
[47]
Guirec Maloisel, Espen Knoop, Christian Schumacher, Bernhard Thomaszewski, Moritz Bächer, and Stelian Coros. 2023. Optimal Design of Flexible-Link Mechanisms With Desired Load-Displacement Profiles. IEEE Robotics and Automation Letters 8, 7 (2023), 4203–4210. https://doi.org/10.1109/LRA.2023.3281289
[48]
Aymeric Maury, Grégoire Allaire, and François Jouve. 2017. Shape optimisation with the level set method for contact problems in linearised elasticity. (Jan. 2017). https://hal.archives-ouvertes.fr/hal-01435325
[49]
Sebastian K. Mitusch, Simon W. Funke, and Jørgen S. Dokken. 2019. dolfin-adjoint 2018.1: automated adjoints for FEniCS and Firedrake. Journal of Open Source Software 4, 38 (2019), 1292. https://doi.org/10.21105/joss.01292
[50]
Bobak Mosadegh, Panagiotis Polygerinos, Christoph Keplinger, Sophia Wennstedt, Robert F. Shepherd, Unmukt Gupta, Jongmin Shim, Katia Bertoldi, Conor J. Walsh, and George M. Whitesides. 2014. Pneumatic Networks for Soft Robotics that Actuate Rapidly. Advanced Functional Materials 24, 15 (2014), 2163–2170. https://doi.org/10.1002/adfm.201303288
[51]
Alexander Niewiarowski, Sigrid Adriaenssens, and Ruy Marcelo Pauletti. 2020. Adjoint optimization of pressurized membrane structures using automatic differentiation tools. Computer Methods in Applied Mechanics and Engineering 372 (2020), 113393. https://doi.org/10.1016/j.cma.2020.113393
[52]
Jorge Nocedal and Stephen J. Wright. 2006. Numerical Optimization (2e ed.). Springer, New York, NY, USA.
[53]
Julian Panetta, Abtin Rahimian, and Denis Zorin. 2017. Worst-case Stress Relief for Microstructures. ACM Trans. Graph. 36, 4, Article 122 (July 2017), 16 pages. https://doi.org/10.1145/3072959.3073649
[54]
Julian Panetta, Qingnan Zhou, Luigi Malomo, Nico Pietroni, Paolo Cignoni, and Denis Zorin. 2015. Elastic Textures for Additive Fabrication. ACM Trans. Graph. 34, 4, Article 135 (July 2015), 12 pages.
[55]
Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, and Ming Lin. 2020. Scalable Differentiable Physics for Learning and Control. In International Conference on Machine Learning. PMLR, 7847–7856.
[56]
Junior Rojas, Eftychios Sifakis, and Ladislav Kavan. 2021. Differentiable Implicit Soft-Body Physics. arXiv preprint arXiv:2102.05791 (2021).
[57]
T. Rumpel and Karl Schweizerhof. 2003. Volume‐dependent pressure loading and its influence on the stability of structures. Internat. J. Numer. Methods Engrg. 56 (01 2003), 211 – 238. https://doi.org/10.1002/nme.561
[58]
Daniela Rus and Michael Thomas Tolley. 2015. Design, fabrication and control of soft robots. Nature 521 (2015), 467–475. https://api.semanticscholar.org/CorpusID:217952627
[59]
Christian Schumacher, Bernd Bickel, Jan Rys, Steve Marschner, Chiara Daraio, and Markus Gross. 2015. Microstructures to Control Elasticity in 3D Printing. ACM Trans. Graph. 34, 4, Article 136 (jul 2015), 13 pages. https://doi.org/10.1145/2766926
[60]
Christian Schumacher, Espen Knoop, and Moritz Bächer. 2020. Simulation-Ready Characterization of Soft Robotic Materials. IEEE Robotics and Automation Letters 5, 3 (2020), 3775–3782.
[61]
Christian Schumacher, Jonas Zehnder, and Moritz Bächer. 2018. Set-in-Stone: Worst-Case Optimization of Structures Weak in Tension. ACM Trans. Graph. 37, 6, Article 252 (dec 2018), 13 pages. https://doi.org/10.1145/3272127.3275085
[62]
Karl Schweizerhof and Ekkehard Ramm. 1984. Displacement Dependent Pressure Loads in Nonlinear Finite Element Analyses. Computers & Structures 18 (07 1984), 1099–1114. https://doi.org/10.1016/0045-7949(84)90154-8
[63]
Ashesh Sharma and Kurt Maute. 2018. Stress-based topology optimization using spatial gradient stabilized XFEM. Structural and Multidisciplinary Optimization 57, 1 (2018), 17–38.
[64]
Robert F. Shepherd, Filip Ilievski, Wonjae Choi, Stephen A. Morin, Adam A. Stokes, Aaron D. Mazzeo, Xin Chen, Michael Wang, and George M. Whitesides. 2011. Multigait soft robot. Proceedings of the National Academy of Sciences 108 (2011), 20400 – 20403.
[65]
Mélina Skouras, Bernhard Thomaszewski, Bernd Bickel, and Markus Gross. 2012. Computational Design of Rubber Balloons. Computer Graphics Forum 31, 2pt4 (2012), 835–844. https://doi.org/10.1111/j.1467-8659.2012.03064.x arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2012.03064.x
[66]
Mélina Skouras, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, and Markus Gross. 2013. Computational Design of Actuated Deformable Characters. ACM Trans. Graph. 32, 4, Article 82 (jul 2013), 10 pages. https://doi.org/10.1145/2461912.2461979
[67]
Mélina Skouras, Bernhard Thomaszewski, Peter Kaufmann, Akash Garg, Bernd Bickel, Eitan Grinspun, and Markus Gross. 2014. Designing Inflatable Structures. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH) 33, 4 (2014). https://doi.org/2601097.2601166
[68]
Stanisław Stupkiewicz, Jakub Lengiewicz, and Jože Korelc. 2010. Sensitivity analysis for frictional contact problems in the augmented Lagrangian formulation. Computer Methods in Applied Mechanics and Engineering 199, 33 (July 2010), 2165–2176. https://doi.org/10.1016/j.cma.2010.03.021
[69]
Javier Tapia, Espen Knoop, Mojmir Mutný, Miguel A. Otaduy, and Moritz Bächer. 2020. MakeSense: Automated Sensor Design for Proprioceptive Soft Robots. Soft Robotics 7, 3 (2020).
[70]
Davi Colli Tozoni, Jérémie Dumas, Zhongshi Jiang, Julian Panetta, Daniele Panozzo, and Denis Zorin. 2020. A Low-Parametric Rhombic Microstructure Family for Irregular Lattices. ACM Trans. Graph. 39, 4, Article 101 (jul 2020), 20 pages. https://doi.org/10.1145/3386569.3392451
[71]
Davi Colli Tozoni, Yunfan Zhou, and Denis Zorin. 2021. Optimizing Contact-Based Assemblies. ACM Trans. Graph. 40, 6, Article 269 (dec 2021), 19 pages. https://doi.org/10.1145/3478513.3480552
[72]
Michael Wehner, Ryan L Truby, Daniel J Fitzgerald, Bobak Mosadegh, George M Whitesides, Jennifer A Lewis, and Robert J Wood. 2016. An integrated design and fabrication strategy for entirely soft, autonomous robots. nature 536, 7617 (2016), 451–455.
[73]
Jie Xu, Sangwoon Kim, Tao Chen, Alberto Rodriguez Garcia, Pulkit Agrawal, Wojciech Matusik, and Shinjiro Sueda. 2022a. Efficient Tactile Simulation with Differentiability for Robotic Manipulation. In 6th Annual Conference on Robot Learning. https://openreview.net/forum?id=6BIffCl6gsM
[74]
Jie Xu, Viktor Makoviychuk, Yashraj Narang, Fabio Ramos, Wojciech Matusik, Animesh Garg, and Miles Macklin. 2022b. Accelerated Policy Learning with Parallel Differentiable Simulation. https://doi.org/10.48550/ARXIV.2204.07137
[75]
Xiaoting Zhang, Xinyi Le, Zihao Wu, Emily Whiting, and Charlie C.L. Wang. 2016. Data-Driven Bending Elasticity Design by Shell Thickness. Computer Graphics Forum (Proceedings of Symposium on Geometry Processing) 35, 5 (2016), 157–166.
[76]
Zhan Zhang, Christopher Brandt, Jouve Jean, Wang Yue, Tian Chen, Mark Pauly, and Francis Julian Panetta. 2023. Computational Design of Flexible Planar Microstructures. ACM Transactions on Graphics 42, 6 (2023), 185. http://infoscience.epfl.ch/record/305985

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGGRAPH '24: ACM SIGGRAPH 2024 Conference Papers
July 2024
1106 pages
ISBN:9798400705250
DOI:10.1145/3641519
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 July 2024

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Differentiable Simulation
  2. Finite Element Method
  3. Pneumatic Actuator
  4. Shape Optimization
  5. Soft Robotics

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

  • Sloan Fellowship
  • NSF

Conference

SIGGRAPH '24
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,822 of 8,601 submissions, 21%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 264
    Total Downloads
  • Downloads (Last 12 months)264
  • Downloads (Last 6 weeks)62
Reflects downloads up to 03 Oct 2024

Other Metrics

Citations

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media