Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3532342.3532351acmotherconferencesArticle/Chapter ViewAbstractPublication PagessspsConference Proceedingsconference-collections
research-article

Threshold Selection on Circular Histogram Using Renyi Entropy

Published: 29 June 2022 Publication History

Abstract

Using the circular histogram of the H component in the HSI color model for threshold selection is a way of color image segmentation. The maximum Shannon entropy thresholding on the circular histogram is an effective segmentation method. Considering that Renyi entropy is one of the generalized forms of Shannon entropy, this paper extends the maximum Shannon entropy threshold selection method on circular histogram to Renyi entropy case, gives recursive algorithm to reduce the time complexity of Renyi entropy threshold selection, and discusses the determination of parameters in Renyi entropy threshold selection. The experimental comparison effect shows that the maximum Renyi entropy threshold selection method outperforms the maximum Shannon entropy threshold selection method.

References

[1]
M.Sezgin, Bulent.Sankur. 2004. Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, Vol.13, No.1,146-165. https://doi.org/10.1117/1.1631315.
[2]
H.D.Cheng, X.H.Jiang, Y.Sun, JingliWang.2001.Color image segmentation: advances and prospects, Pattern Recognition, Vol.34, No.12, 2259-2281. https://doi.org/10.1016/S0031-3203(00)00149-7
[3]
Paul L Rosin, Efstathios Ioannidis.2003. Evaluation of global image thresholding for change detection. Pattern Recognition Letters, Vol.24, No.14, 2345-2356. https://doi.org/10.1016/S0167-8655(03)00060-6.
[4]
Yu.J.Zhang. 2001.Image Segmentation. Beijing: Science Press.
[5]
Jiu.L.Fan. 2019. Gray Image Thresholding Segmentation Methods. Beijing: Science Press.
[6]
Sreenath.R.Vantaram, Eli.Saber,.2012. Survey of contemporary trends in color image segmentation, Journal of Electronic Imaging, Vol. 21, No.4, 040901. https://doi.org/10.1117/1.JEI.21.4.040901
[7]
Farid Garcia-Lamont, Jair Cervantes, Asdrúbal López, Lisbeth Rodriguez. 2018. Segmentation of images by color features: a survey, Neurocomputing, Vol. 292 .1-27. https://doi.org/10.1016/j.neucom.2018.01.091
[8]
John M.Gauch, Chi W.Hsia. 1992.A comparison of three color image segmentation algorithms in four color spaces. SPIE Visual Communications and Image Processing, Boston,MA, 1168-1181. https://doi.org/10.1117/12.131388
[9]
R.C.Gonzales, R.E.Wood.1977.Digital Image Processing, Mass-London-Amsterdam, Addison-Wesley Publishing.
[10]
N.Ikonomakis, K.N.Plataniotis, A.N.Venetsanopoulos.2000.Color image segmentation for multimedia applications, Journal of Intelligent and Robotic Systems, Vol. 28,5-20. https://doi.org/10.1007/978-94-011-4840-5_26
[11]
Nida.M.Zaitoun, Musbah.J.Aqel.2015.Survey on image segmentation techniques, Procedia Computer Science, Vol. 65,797-806. https://doi.org/10.1016/j.procs.2015.09.027.
[12]
Thanet.Markchom, Rajalida. Lipikorn. 2018. Thin Cloud Removal Using Local Minimization and Logarithm Image Transformation in HSI Color Space. 4th International Conference on Frontiers of Signal Processing, Poitiers, France,100-104. https://doi.org/10.1109/ICFSP.2018.8552064.
[13]
Vasileios Karavasilis, Christophoros Nikou, Aristidis Likas. 2017. Real time visual tracking using a spatially weighted von Mises mixture model, Pattern Recognition Letters.,50-57. https://doi.org/10.1016/j.patrec.2017.03.013.
[14]
Fan Wu,U Kin Tak. 2017. Low-Light image enhancement algorithm based on HSI color space. 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatice, Shanghai, China, 1-6. https://doi.org/10.1109/CISP-BMEI.2017.8301957
[15]
Michaël Clément, Adrien Poulenard, Camille Kurtz, Laurent Wendling. 2017. Directional Enlacement Histograms for the Description of Complex Spatial Configurations between Objects, IEEE Transactions on Pattern Analysis and Machine Intelligence, Barcelona, 2366-2380. https://doi.org/10.1109/TPAMI.2016.2645151.
[16]
Shoji.Tominaga. 1987. Expansion of color images using three perceptual attributes. Pattern Recognition Letters, Vol.6, No.1, 77-85. https://doi.org/10.1016/0167-8655(87)90052-3.
[17]
MehmetCelenk.1990.A color clustering technique for image segmentation, Computer Vision Graphics and Image Processing, Vol.52, No.2, 145-170. https://doi.org/10.1016/0734-189X(90)90052-W.
[18]
Ding.C.Tseng, Yao.F.Li, Cheng.T.Tung. 1995.Circular histogram thresholding for color image segmentation. Proceedings of 3rd International Conference on Document Analysis and Recognition, Montreal, Quebec,Canada. 673-676. https://doi.org/10.1109/ICDAR.1995.601986.
[19]
Jianhua.Wu, Pingping.Zeng, Yuan.Zhou, Christian.Olivier. 2006. A novel colour image segmentation method and its application to white blood cell image analysis. 8th international Conference on Signal Processing, Guilin, China. https://doi.org/10.1109/ICOSP.2006.345700.
[20]
Dimo.Dimov, Lasko.Laskov. 2009.Cyclic histogram thresholding and multi-thresholding, International Conference on Computer Systems and Technologies, Rousse, Bulgaria, 1-8. https://doi.org/10.1145/1731740.1731761.
[21]
Yun K.Lai, Paul L. Rosin.2014. Efficient circular thresholding. IEEE Transactions on Image Processing, Vol.23, No.3, 992-1001. https://doi.org/10.1109/TIP.2013.2297014.
[22]
Chao.Kang, Chengmao.Wu, Jiulun.Fan.2020. Lorenz Curve-Based entropy thresholding on circular histogram. IEEE Access, Vol.8,17025-17038. https://doi.org/10.1109/ACCESS.2020.2964335.
[23]
Chao.Kang, Chengmao.Wu, Jiulun.Fan. 2020. Entropy-based circular histogram thresholding for color image segmentation. Signal Image and Video Processing, Vol.15, No.41,129-138. https://doi.org/10.1007/s11760-020-01723-2.
[24]
C.E.Shannon.1948. A mathematical theory of communication. Bell Systems Technical Journal, Vol.27, No.3,379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.
[25]
T.Pun.1981.Entropic thresholding, a new approach. Computer Graphics and Image Processing, Vol.16, No.3,210-239. https://doi.org/10.1016/0146-664X(81)90038-1.
[26]
J.N.Kapur, P.K.Sahoo, K.C. A. Wong.1985. A new method for gray-level picture thresholding using the entropy of the histogram. Computer Vision, Graphics, and Image Processing, Vol.29, No.3, 273-285. https://doi.org/ 10.1016/S0734-189X (85)90156-2.
[27]
A.Rényi.1959. On measures of entropy and information, Acta Mathematica Academiae Scientiarum Hungarica, Vol.10,441-451. https://doi.org/10.1119/1.1987177.
[28]
Prasanna Sahoo, Carrye Wilkins, Jerry Yeager.1997. Threshold selection using Renyi's entropy. Pattern Recognition, Vol.30, No.1, 71-84. https://doi.org/10.1016/S0031-3203(96)00065-9.
[29]
Prasanna K. Sahoo, Gurdial Arora. 2004. A thresholding method based on two-dimensional Renyi's entropy, Pattern Recognition, Vol.37, No.6, 1149-1161.https://doi.org/10.1016/j.patcog.2003.10.008.
[30]
Soham Sarkar, Swagatam Das, Sheli Sinha Chaudhuri.2016. Hyper-spectral image segmentation using Rényi entropy based multi-level thresholding aided with differential evolution. Expert Systems with Applications, Vol.50, No.15,120-129. https://doi.org/10.1016/j.eswa.2015.11.016.
[31]
Songwei Zhao, Pengjun Wang, Ali Asghar Heidari, Huiling Chen, Hamza Turabieh, Majdi Mafarja, Chengye Li. 2021.Multilevel threshold image segmentation with diffusion association slime mould algorithm and Renyi's entropy for chronic obstructive pulmonary disease, Computers in Biology and Medicine, Vol.134,104427. https://doi.org/10.1016/j.compbiomed.2021.104427.
[32]
Ricardo H. Nobre, Francisco A.A.Rodrigues, Regis C.P.Marques, 2016 SAR image segmentation with Rényi's entropy. IEEE Signal Processing Letters, Vol.23, No.11, 1551-1555. https://doi.org/10.1109/LSP.2016.2606760.
[33]
Guifeng.Yang, Jiulun.Fan, Dong Wang. 2021. Recursive algorithms of maximum entropy thresholding on circular histogram, Mathematical Problems in Engineering, Vol.5,1-13. https://doi.org/10.1155/2021/6653031.
[34]
Jui.C.Yen,Fu.J.Chang,Shyang.Chang.1995A new criterion for automatic multilevel thresholding. IEEE Transactions on Image Process, Vol.4, No.3,370-378. https://doi.org/10.1109/83.366472.
[35]
O.M.Berezsky, O.Y.Pitsun.2018.Evaluation methods of image segmentation quality. Radio Electronics Computer Science Control, Vol.1,119-128. https://doi.org/10.15588/1607-3274-2018-1-14.
[36]
I.Seok.Oh, Jin.S.Lee,Byung.R.Moon.2004.Hybrid genetic algorithms for feature selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.26, No.11, 1424-1437.
[37]
Wang.Zhou, Alan.Bovik,Eero p.Simoncelli.2004. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Process, Vol.13, No.4,600-612. https://doi.org/10.1109/TIP.2003.819861.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
SSPS '22: Proceedings of the 4th International Symposium on Signal Processing Systems
March 2022
116 pages
ISBN:9781450396103
DOI:10.1145/3532342
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 29 June 2022

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Circular histogram
  2. Color image segmentation
  3. HSI color model
  4. Renyi entropy
  5. Threshold selection

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

SSPS 2022

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 29
    Total Downloads
  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Feb 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media