Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3506860.3506914acmotherconferencesArticle/Chapter ViewAbstractPublication PageslakConference Proceedingsconference-collections
research-article
Open access

Tweetology of Learning Analytics: What does Twitter tell us about the trends and development of the field?

Published: 21 March 2022 Publication History

Abstract

Twitter is a very popular microblogging platform that has been actively used by scientific communities to exchange scientific information and to promote scholarly discussions. The present study aimed to leverage the tweet data to provide valuable insights into the development of the learning analytics field since its initial days. Descriptive analysis, geocoding analysis, and topic modeling were performed on over 1.6 million tweets related to learning analytics posted between 2010-2021. The descriptive analysis reveals an increasing popularity of the field on the Twittersphere in terms of number of users, twitter posts, and hashtags emergence. The topic modeling analysis uncovers new insights of the major topics in the field of learning analytics. Emergent themes in the field were identified, and the increasing (e.g., Artificial Intelligence) and decreasing (e.g., Education) trends were shared. Finally, the geocoding analysis indicates an increasing participation in the field from more diverse countries all around the world. Further findings are discussed in the paper.

References

[1]
Ahlgren, M. (2020). 50+ Twitter Statistics & Facts For 2020. Accessed: Mar. 22, 2020. [Online]. Available: https://www.websitehostingrating.com/twitter-statistics/
[2]
Arnold, K. E., Lynch, G., Huston, D., Wong, L., Jorn, L., & Olsen, C. W. (2014). Building institutional capacities and competencies for systemic learning analytics initiatives. Proceedings of the Fourth International Conference on LAK, 257–260. https://doi.org/10.1145/2567574.2567593
[3]
Asadi, M., & Agah, A. (2017). Characterizing user influence within Twitter. International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 122–132.
[4]
Benney, J. (2011). Twitter and Legal Activism in China. Communication, Politics & Culture, 44(1), 5–20. https://doi.org/10.3316/informit.127165324261101
[5]
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. The Journal of Machine Learning Research, 3, 993–1022.
[6]
Bombaci, S. P., Farr, C. M., Gallo, H. T., Mangan, A. M., Stinson, L. T., Kaushik, M., & Pejchar, L. (2016). Using Twitter to communicate conservation science from a professional conference. Conservation Biology, 30(1), 216–225.
[7]
Boon-Itt, S., & Skunkan, Y. (2020). Public perception of the COVID-19 pandemic on Twitter: Sentiment analysis and topic modeling study. JMIR Public Health and Surveillance, 6(4), e21978.
[8]
Buccoliero, L., Bellio, E., Crestini, G., & Arkoudas, A. (2020). Twitter and politics: Evidence from the US presidential elections 2016. Journal of Marketing Communications, 26(1), 88–114.
[9]
Chen, B., Chen, X., & Xing, W. (2015). “Twitter Archeology” of learning analytics and knowledge conferences. Proceedings of the Fifth International Conference on Learning Analytics and Knowledge, 340–349.
[10]
Cheplygina, V., Hermans, F., Albers, C., Bielczyk, N., & Smeets, I. (2020). Ten simple rules for getting started on Twitter as a scientist. Public Library of Science San Francisco, CA USA.
[11]
Collins, K., Shiffman, D., & Rock, J. (2016). How are scientists using social media in the workplace? PloS One, 11(10), e0162680.
[12]
Conover, M. D., Ratkiewicz, J., Francisco, M., Gonçalves, B., Menczer, F., & Flammini, A. (2011). Political polarization on twitter. Fifth International AAAI Conference on Weblogs and Social Media.
[13]
Costas, R., van Honk, J., & Franssen, T. (2017). Scholars on Twitter: Who and how many are they? ArXiv Preprint ArXiv:1712.05667.
[14]
Dahal, B., Kumar, S. A. P., & Li, Z. (2019). Topic modeling and sentiment analysis of global climate change tweets. Social Network Analysis and Mining, 9(1), 24. https://doi.org/10.1007/s13278-019-0568-8
[15]
Darling, E. S., Shiffman, D., Côté, I. M., & Drew, J. A. (2013). The role of Twitter in the life cycle of a scientific publication. ArXiv Preprint ArXiv:1305.0435.
[16]
Deacon, D., Pickering, M., Golding, P., & Murdock, G. (2021). Researching communications: A practical guide to methods in media and cultural analysis. Bloomsbury Publishing USA.
[17]
Ferrara, E. (2020). # covid-19 on twitter: Bots, conspiracies, and social media activism. arXiv preprint arXiv: 2004.09531.
[18]
Gentry, J., Gentry, M. J., RSQLite, S., & Artistic, Rm. L. (2016). Package ‘twitteR.’ R Package Version, 1(9).
[19]
Goldberg, D. W. (2009). A Geocoding Best Practices Guide, The North American Association of Central Cancer Registries.
[20]
Greller, W., & Drachsler, H. (2012). Translating Learning into Numbers: A Generic Framework for Learning Analytics. Journal of Educational Technology & Society, 15(3), 42–57.
[21]
Grover, P., Kar, A. K., & Davies, G. (2018). “Technology enabled Health”–Insights from twitter analytics with a socio-technical perspective. International Journal of Information Management, 43, 85–97.
[22]
Humphreys, L., Gill, P., & Krishnamurthy, E. (2010). PRIVACY ON TWITTER 1 How much is too much? Privacy issues on Twitter.
[23]
Java, A., Song, X., Finin, T., & Tseng, B. (2007). Why we twitter: Understanding microblogging usage and communities. Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, 56–65. https://doi.org/10.1145/1348549.1348556
[24]
Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2019). Latent Dirichlet allocation (LDA) and topic modeling: Models, applications, a survey. Multimedia Tools and Applications, 78(11), 15169–15211.
[25]
Karami, A., Lundy, M., Webb, F. & Dwivedi, Y. K. (2020). Twitter and research: A systematic literature review through text mining. IEEE Access, 8.
[26]
Khalil, M. (2018). Learning analytics in massive open online courses. arXiv preprint arXiv:1802.09344.
[27]
Kim, A. E., Hansen, H. M., Murphy, J., Richards, A. K., Duke, J., & Allen, J. A. (2013). Methodological considerations in analyzing Twitter data. Journal of the National Cancer Institute Monographs, 2013(47), 140–146.
[28]
Kimmons, R., Rosenberg, J., & Allman, B. (2021). Trends in educational technology: What Facebook, Twitter, and Scopus can tell us about current research and practice. TechTrends, 1–12.
[29]
Lyu, J. C., Le Han, E., & Luli, G. K. (2021). COVID-19 vaccine–related discussion on Twitter: Topic modeling and sentiment analysis. Journal of Medical Internet Research, 23(6), e24435.
[30]
Martischang, R., Tartari, E., Kilpatrick, C., Mackenzie, G., Carter, V., Castro-Sánchez, E., Márquez-Villarreal, H., Otter, J. A., Perencevich, E., & Silber, D. (2021). Enhancing engagement beyond the conference walls: Analysis of Twitter use at# ICPIC2019 infection prevention and control conference. Antimicrobial Resistance & Infection Control, 10(1), 1–10.
[31]
Peri, S., Chen, B., Dougall, A. L., & Siemens, G. (2020). Towards understanding the lifespan and spread of ideas: Epidemiological modeling of participation on Twitter. Proceedings of the Tenth International Conference on Learning Analytics & Knowledge, 197–202. https://doi.org/10.1145/3375462.3375515
[32]
Prinsloo, P., Khalil, M., & Slade, S. (2021). Learning analytics in a time of pandemics: mapping the field. In EDEN Conference Proceedings (No. 1, pp. 59-70).
[33]
Sass, C., Pimentel, T. C., Aleixo, M. G. B., Dantas, T. M., Cyrino Oliveira, F. L., de Freitas, M. Q., da Cruz, A. G., & Esmerino, E. A. (2020). Exploring social media data to understand consumers’ perception of eggs: A multilingual study using Twitter. Journal of Sensory Studies, 35(6), e12607.
[34]
Schnitzler, K., Davies, N., Ross, F., & Harris, R. (2016). Using TwitterTM to drive research impact: A discussion of strategies, opportunities and challenges. International Journal of Nursing Studies, 59, 15–26.
[35]
Selwyn, N. (2020). Re-imagining ‘Learning Analytics’ … a case for starting again? The Internet and Higher Education, 46, 100745. https://doi.org/10.1016/j.iheduc.2020.100745
[36]
Shiffman, D. S. (2012). Twitter as a tool for conservation education and outreach: What scientific conferences can do to promote live-tweeting. Journal of Environmental Studies and Sciences, 2(3), 257–262.
[37]
Shum, S. J. B., & Luckin, R. (2019). Learning analytics and AI: Politics, pedagogy and practices. British Journal of Educational Technology, 50(6), 2785–2793.
[38]
Sinnenberg, L., Buttenheim, A. M., Padrez, K., Mancheno, C., Ungar, L., & Merchant, R. M. (2017). Twitter as a tool for health research: A systematic review. American Journal of Public Health, 107(1), e1–e8.
[39]
Stevens, K., Kegelmeyer, P., Andrzejewski, D., & Buttler, D. (2012). Exploring topic coherence over many models and many topics. Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, 952–961.
[40]
Tajbakhsh, M. S., & Bagherzadeh, J. (2016). Microblogging hash tag recommendation system based on semantic TF-IDF: Twitter use case. 2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW), 252–257.
[41]
Tsao, S.-F., Chen, H., Tisseverasinghe, T., Yang, Y., Li, L., & Butt, Z. A. (2021). What social media told us in the time of COVID-19: A scoping review. The Lancet Digital Health, 3(3), e175–e194. https://doi.org/10.1016/S2589-7500(20)30315-0
[42]
Veletsianos, G. (2017). Three cases of hashtags used as learning and professional development environments. TechTrends, 61(3), 284–292.
[43]
Veltri, G. A., & Atanasova, D. (2017). Climate change on Twitter: Content, media ecology and information sharing behaviour. Public Understanding of Science, 26(6), 721–737.
[44]
Vu, H. T., Do, H. V., Seo, H., & Liu, Y. (2020). Who Leads the Conversation on Climate Change?: A Study of a Global Network of NGOs on Twitter. Environmental Communication, 14(4), 450–464.
[45]
Wicke, P., & Bolognesi, M. M. (2020). Framing COVID-19: How we conceptualize and discuss the pandemic on Twitter. PloS One, 15(9), e0240010.
[46]
Wiley, K. J., Dimitriadis, Y., Bradford, A., & Linn, M. C. (2020). From theory to action: Developing and evaluating learning analytics for learning design. Proceedings of the Tenth International Conference on Learning Analytics & Knowledge, 569–578. https://doi.org/10.1145/3375462.3375540
[47]
Williams, S. A., Terras, M. M., & Warwick, C. (2013). What do people study when they study Twitter? Classifying Twitter related academic papers. Journal of Documentation.
[48]
Wong, J., Baars, M., de Koning, B. B., van der Zee, T., Davis, D., Khalil, M., ... & Paas, F. (2019). Educational theories and learning analytics: From data to knowledge. In Utilizing learning analytics to support study success (pp. 3-25). Springer, Cham.
[49]
Zhao, W., Chen, J. J., Perkins, R., Liu, Z., Ge, W., Ding, Y., & Zou, W. (2015). A heuristic approach to determine an appropriate number of topics in topic modeling. BMC Bioinformatics, 16(13), S8. https://doi.org/10.1186/1471-2105-16-S13-S8
[50]
Zhou, Y., & Na, J. (2019). A comparative analysis of Twitter users who Tweeted on psychology and political science journal articles. Online Information Review.

Cited By

View all
  • (2022)Improving IndoBERT for Sentiment Analysis on Indonesian Stock Trader Slang Language2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)10.1109/IoTaIS56727.2022.9975975(240-244)Online publication date: 24-Nov-2022

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
LAK22: LAK22: 12th International Learning Analytics and Knowledge Conference
March 2022
582 pages
ISBN:9781450395731
DOI:10.1145/3506860
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 21 March 2022

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Twitter
  2. Twitter analysis
  3. geospatial analysis
  4. learning analytics
  5. topic modeling

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

LAK22

Acceptance Rates

Overall Acceptance Rate 236 of 782 submissions, 30%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)345
  • Downloads (Last 6 weeks)35
Reflects downloads up to 23 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2022)Improving IndoBERT for Sentiment Analysis on Indonesian Stock Trader Slang Language2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)10.1109/IoTaIS56727.2022.9975975(240-244)Online publication date: 24-Nov-2022

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media