Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3590140.3592848acmconferencesArticle/Chapter ViewAbstractPublication PagesmiddlewareConference Proceedingsconference-collections
research-article
Open access

EESMR: Energy Efficient BFT---SMR for the masses

Published: 27 November 2023 Publication History

Abstract

Modern Byzantine Fault-Tolerant State Machine Replication (BFT-SMR) solutions focus on reducing communication complexity, improving throughput, or lowering latency. This work explores the energy efficiency of BFT-SMR protocols. First, we propose a novel SMR protocol that optimizes for the steady state, i.e., when the leader is correct. This is done by reducing the number of required signatures per consensus unit and the communication complexity by order of the number of nodes n compared to the state-of-the-art BFT-SMR solutions. Concretely, we employ the idea that a quorum (collection) of signatures on a proposed value is avoidable during the failure-free runs. Second, we model and analyze the energy efficiency of protocols and argue why the steady-state needs to be optimized. Third, we present an application in the cyber-physical system (CPS) setting, where we consider a partially connected system by optionally leveraging wireless multicasts among neighbors. We analytically determine the parameter ranges for when our proposed protocol offers better energy efficiency than communicating with a baseline protocol utilizing an external trusted node. We present a hypergraph-based network model and generalize previous fault tolerance results to the model. Finally, we demonstrate our approach's practicality by analyzing our protocol's energy efficiency through experiments on a CPS test bed. In particular, we observe as high as 64% energy savings when compared to the state-of-the-art SMR solution for n = 10 settings using BLE.

References

[1]
2020. A Byzantine Failure in the Real World. http://blog.cloudflare.com/a-byzantine-failure-in-the-real-world/
[2]
2021. IBM Documentation. https://prod.ibmdocs-production-dal-6099123ce774e592a519d7c33db8265e-0000.us-south.containers.appdomain.cloud/docs/en/zos/2.3.0?topic=certificates-size-considerations-public-private-keys
[3]
2022. README for Mbed TLS. Mbed TLS. https://github.com/Mbed-TLS/mbedtls
[4]
Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. 2019. Synchronous Byzantine Agreement with Expected O(1) Rounds, Expected O(N2) Communication, and Optimal Resilience. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Goldberg Ian and Tyler and Moore (Eds.). Vol. 11598 LNCS. Springer International Publishing, Cham, 320--334. https://doi.org/10.1007/978-3-030-32101-7_20
[5]
Ittai Abraham and Danny Dolev. 2015. Byzantine Agreement with Optimal Early Stopping, Optimal Resilience and Polynomial Complexity. arXiv:arXiv:1504.02547 http://arxiv.org/abs/1504.02547 Comment: full version of STOC 2015 abstract.
[6]
Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. 2020. Sync HotStuff: Simple and Practical Synchronous State Machine Replication. In 2020 IEEE Symposium on Security and Privacy (SP), Vol. 2020-May. IEEE, Oakland, 106--118. https://doi.org/10.1109/SP40000.2020.00044
[7]
Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. 2021. Good-Case Latency of Byzantine Broadcast. In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing. ACM, New York, NY, USA, 331--341. https://doi.org/10.1145/3465084.3467899 arXiv:2102.07240
[8]
Ittai Abraham, Kartik Nayak, and Nibesh Shrestha. 2022. Optimal Good-Case Latency for Rotating Leader Synchronous BFT. In 25th International Conference on Principles of Distributed Systems (OPODIS 2021) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 217), Quentin Bramas, Vincent Gramoli, and Alessia Milani (Eds.). Schloss Dagstuhl -- Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 27:1--27:19. https://doi.org/10.4230/LIPIcs.OPODIS.2021.27
[9]
Ittai Abraham, Benny Pinkas, and Avishay Yanai. 2020. Blinder: MPC Based Scalable and Robust Anonymous Committed Broadcast. Cryptology ePrint Archive (2020). https://eprint.iacr.org/2020/248
[10]
Ittai Abraham and Gilad Stern. 2020. Information Theoretic HotStuff. arXiv preprint arXiv:2009.12828 (2020). arXiv:2009.12828
[11]
Amitanand S. Aiyer, Lorenzo Alvisi, Rida A. Bazzi, and Allen Clement. 2008. Matrix Signatures: From MACs to Digital Signatures in Distributed Systems. In Distributed Computing (Lecture Notes in Computer Science), Gadi Taubenfeld (Ed.). Springer, Berlin, Heidelberg, 16--31. https://doi.org/10.1007/978-3-540-87779-0_2
[12]
Nicolas Alhaddad, Sisi Duan, Mayank Varia, and Haibin Zhang. 2021. Succinct Erasure Coding Proof Systems. Cryptology ePrint Archive (2021). https://eprint.iacr.org/2021/1500
[13]
Renas Bacho, Daniel Collins, Chen-Da Liu-Zhang, and Julian Loss. 2022. Network-Agnostic Security Comes for Free in DKG and MPC. https://eprint.iacr.org/2022/1369
[14]
Zuzana Beerliová-Trubíniová, Martin Hirt, and Micha Riser. 2007. Efficient Byzantine Agreement with Faulty Minority. In Advances in Cryptology -- ASIACRYPT 2007 (Lecture Notes in Computer Science), Kaoru Kurosawa (Ed.). Springer, Berlin, Heidelberg, 393--409. https://doi.org/10.1007/978-3-540-76900-2_24
[15]
Alysson Bessani, João Sousa, and Eduardo E.P. Alchieri. 2014. State Machine Replication for the Masses with BFT-SMART. In Proceedings of the International Conference on Dependable Systems and Networks. IEEE, 355--362. https://doi.org/10.1109/DSN.2014.43
[16]
Adithya Bhat, Akhil Bandarupalli, Manish Nagaraj, Saurabh Bagchi, Aniket Kate, and Micheal K. Reiter. 2023. EESMR: Energy Efficient BFT-SMR for the masses. arXiv:2304.04998 [cs.CR]
[17]
Umesh Bodkhe, Dhyey Mehta, Sudeep Tanwar, Pronaya Bhattacharya, Pradeep Kumar Singh, and Wei-Chiang Hong. 2020. A Survey on Decentralized Consensus Mechanisms for Cyber Physical Systems. IEEE Access 8 (2020), 54371--54401. https://doi.org/10.1109/ACCESS.2020.2981415
[18]
Dan Boneh and Xavier Boyen. 2008. Short Signatures Without Random Oracles and the SDH Assumption in Bilinear Groups. Journal of Cryptology 21, 2 (April 2008), 149--177. https://doi.org/10.1007/s00145-007-9005-7
[19]
Gabriel Bracha and Sam Toueg. 1985. Asynchronous Consensus and Broadcast Protocols. J. ACM 32, 4 (Oct. 1985), 824--840. https://doi.org/10.1145/4221.214134
[20]
Ethan Buchman, Jae Kwon, and Zarko Milosevic. 2019. The Latest Gossip on BFT Consensus. (Nov. 2019), 1--14. arXiv:1807.04938 http://arxiv.org/abs/1807.04938
[21]
Miguel Castro and Barbara Liskov. 2002. Practical Byzantine Fault Tolerance and Proactive Recovery. ACM Transactions on Computer Systems 20, 4 (Nov. 2002), 398--461. https://doi.org/10.1145/571637.571640
[22]
Hua Chai and Wenbing Zhao. 2014. Byzantine Fault Tolerant Event Stream Processing for Autonomic Computing. In 2014 IEEE 12th International Conference on Dependable, Autonomic and Secure Computing. 109--114. https://doi.org/10.1109/DASC.2014.28
[23]
T-H Hubert Chan, Rafael Pass, and Elaine Shi. 2018. PaLa: A Simple Partially Synchronous Blockchain, 21 pages. https://eprint.iacr.org/2018/981
[24]
T.-H. Hubert Chan, Rafael Pass, and Elaine Shi. 2018. PiLi: An Extremely Simple Synchronous Blockchain. https://eprint.iacr.org/2018/980
[25]
Baibhab Chatterjee, Dong-Hyun Seo, Shramana Chakraborty, Shitij Avlani, Xiaofan Jiang, Heng Zhang, Mustafa Abdallah, Nithin Raghunathan, Charilaos Mousoulis, Ali Shakouri, Saurabh Bagchi, Dimitrios Peroulis, and Shreyas Sen. 2021. Context-Aware Collaborative Intelligence With Spatio-Temporal In-Sensor-Analytics for Efficient Communication in a Large-Area IoT Testbed. IEEE Internet of Things Journal 8, 8 (April 2021), 6800--6814. https://doi.org/10.1109/JIOT.2020.3036087
[26]
Kim Kwang Raymond Choo, Uttam Ghosh, Deepak Tosh, Reza M. Parizi, and Ali Dehghantanha. 2021. Introduction to the Special Issue on Decentralized Blockchain Applications and Infrastructures for Next Generation Cyber-Physical Systems. ACM Transactions on Internet Technology 21, 2 (June 2021), 38e:1--38e:3. https://doi.org/10.1145/3464768
[27]
Jeffrey Considine, Matthias Fitzi, Matthew Franklin, Leonid A Levin, Ueli Maurer, and David Metcalf. 2005. Byzantine Agreement Given Partial Broadcast. Journal of Cryptology 18, 3 (July 2005), 191--217. https://doi.org/10.1007/s00145-005-0308-x
[28]
Ronald Cramer and Victor Shoup. 2000. Signature Schemes Based on the Strong RSA Assumption. ACM Transactions on Information and System Security 3, 3 (Aug. 2000), 161--185. https://doi.org/10.1145/357830.357847
[29]
Sourav Das, Zhuolun Xiang, and Ling Ren. 2021. Asynchronous Data Dissemination and Its Applications. Cryptology ePrint Archive (2021). https://eprint.iacr.org/2021/777
[30]
Jérémie Decouchant, David Kozhaya, Vincent Rahli, and Jiangshan Yu. 2022. DAMYSUS: Streamlined BFT Consensus Leveraging Trusted Components. In Proceedings of the Seventeenth European Conference on Computer Systems (EuroSys '22). Association for Computing Machinery, New York, NY, USA, 1--16. https://doi.org/10.1145/3492321.3519568
[31]
Dina S. Deif and Yasser Gadallah. 2017. An Ant Colony Optimization Approach for the Deployment of Reliable Wireless Sensor Networks. IEEE Access 5 (2017), 10744--10756. https://doi.org/10.1109/ACCESS.2017.2711484
[32]
Danny Dolev and H Raymond Strong. 1983. Authenticated Algorithms for Byzantine Agreement. SIAM J. Comput. 12, 4 (Nov. 1983), 656--666. https://doi.org/10.1137/0212045
[33]
Sisi Duan and Haibin Zhang. 2022. Byzantine Reliable Broadcast with O(nL+kn+n2 Log n) Communication. Cryptology ePrint Archive (2022). https://eprint.iacr.org/2022/554
[34]
Sidi Boubacar ElMamy, Hichem Mrabet, Hassen Gharbi, Abderrazak Jemai, and Damien Trentesaux. 2020. A Survey on the Usage of Blockchain Technology for Cyber-Threats in the Context of Industry 4.0. Sustainability 12, 21 (Jan. 2020), 9179. https://doi.org/10.3390/su12219179
[35]
Federico Ferrari, Marco Zimmerling, Lothar Thiele, and Olga Saukh. 2011. Efficient Network Flooding and Time Synchronization with Glossy. In Proceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks. 73--84.
[36]
NIST Fips. 1994. 186 Digital Signature Standard.
[37]
Mattias Fitzi and Ueli Maurer. 2000. From Partial Consistency to Global Broadcast. In Proceedings of the Annual ACM Symposium on Theory of Computing. ACM Press, New York, New York, USA, 494--503. https://doi.org/10.1145/335305.335363
[38]
Juan Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The Bitcoin Backbone Protocol: Analysis and Applications. In Advances in Cryptology - EUROCRYPT 2015 (Lecture Notes in Computer Science), Elisabeth Oswald and Marc Fischlin (Eds.). Springer, Berlin, Heidelberg, 281--310. https://doi.org/10.1007/978-3-662-46803-6_10
[39]
Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. 2019. SBFT: A Scalable and Decentralized Trust Infrastructure. In 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE, 568--580. https://doi.org/10.1109/DSN.2019.00063 arXiv:1804.01626
[40]
Song Guo and Oliver W.W. Yang. 2007. Energy-Aware Multicasting in Wireless Ad Hoc Networks: A Survey and Discussion. Computer Communications 30, 9 (June 2007), 2129--2148. https://doi.org/10.1016/j.comcom.2007.04.006
[41]
Junxian Huang, Feng Qian, Alexandre Gerber, Z Morley Mao, Subhabrata Sen, and Oliver Spatscheck. 2012. A Close Examination of Performance and Power Characteristics of 4G LTE Networks. In Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services - MobiSys '12. ACM Press, New York, New York, USA, 225. https://doi.org/10.1145/2307636.2307658
[42]
Xiaofan Jiang, Heng Zhang, Edgardo Alberto Barsallo Yi, Nithin Raghunathan, Charilaos Mousoulis, Somali Chaterji, Dimitrios Peroulis, Ali Shakouri, and Saurabh Bagchi. 2021. Hybrid Low-Power Wide-Area Mesh Network for IoT Applications. IEEE Internet of Things Journal 8, 2 (Jan. 2021), 901--915. https://doi.org/10.1109/JIOT.2020.3009228
[43]
Don Johnson, Alfred Menezes, and Scott Vanstone. 2001. The Elliptic Curve Digital Signature Algorithm (ECDSA). International Journal of Information Security 1, 1 (Aug. 2001), 36--63. https://doi.org/10.1007/s102070100002
[44]
Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon Kuhnle, Seyed Vahid Mohammadi, Wolfgang Schröder-Preikschat, and Klaus Stengel. 2012. CheapBFT: Resource-Efficient Byzantine Fault Tolerance. In Proceedings of the 7th ACM European Conference on Computer Systems (EuroSys '12). Association for Computing Machinery, New York, NY, USA, 295--308. https://doi.org/10.1145/2168836.2168866
[45]
Muhammad Samir Khan, Syed Shalan Naqvi, and Nitin H Vaidya. 2019. Exact Byzantine Consensus on Undirected Graphs under Local Broadcast Model. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing. ACM, New York, NY, USA, 327--336. https://doi.org/10.1145/3293611.3331619 arXiv:1903.11677
[46]
Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K Lenstra, Emmanuel Thomé, Joppe W Bos, Pierrick Gaudry, Alexander Kruppa, Peter L Montgomery, Dag Arne Osvik, Andrey Timofeev, and Paul Zimmermann. [n. d.]. Factorization of a 768-Bit RSA Modulus. ([n.d.]), 18.
[47]
Chiu Yuen Koo. 2004. Broadcast in Radio Networks Tolerating Byzantine Adversarial Behavior. In Proceedings of the Annual ACM Symposium on Principles of Distributed Computing, Vol. 23. ACM Press, New York, New York, USA, 275--282. https://doi.org/10.1145/1011767.1011807
[48]
Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong. 2007. Zyzzyva: Speculative Byzantine Fault Tolerance. In Proceedings of Twenty-First ACM SIGOPS Symposium on Operating Systems Principles - SOSP '07, Vol. 41. ACM Press, New York, New York, USA, 45. https://doi.org/10.1145/1294261.1294267
[49]
Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Generals Problem. ACM Transactions on Programming Languages and Systems 4, 3 (July 1982), 382--401. https://doi.org/10.1145/357172.357176
[50]
Shancang Li, Shanshan Zhao, Po Yang, Panagiotis Andriotis, Lida Xu, and Qindong Sun. 2019. Distributed Consensus Algorithm for Events Detection in Cyber-Physical Systems. IEEE Internet of Things Journal 6, 2 (April 2019), 2299--2308. https://doi.org/10.1109/JIOT.2019.2906157
[51]
Johannes Merkle and Manfred Lochter. 2010. Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation. Request for Comments RFC 5639. Internet Engineering Task Force. https://doi.org/10.17487/RFC5639
[52]
Henrique Moniz. 2020. The Istanbul BFT Consensus Algorithm. https://doi.org/10.48550/arXiv.2002.03613 arXiv:arXiv:2002.03613
[53]
Roberto Montemanni, L.M. Gambardella, and A.K. Das. 2005. The Minimum Power Broadcast Problem in Wireless Networks: A Simulated Annealing Approach. In IEEE Wireless Communications and Networking Conference, 2005, Vol. 4. IEEE, 2057--2062. https://doi.org/10.1109/WCNC.2005.1424835
[54]
Pete Mutschler. 2018. Threats to Precision Agriculture. (July 2018). https://policycommons.net/artifacts/1571846/threats-to-precision-agriculture/2261625/
[55]
Kartik Nayak, Ling Ren, Elaine Shi, Nitin H Vaidya, and Zhuolun Xiang. 2020. Improved Extension Protocols for Byzantine Broadcast and Agreement. Leibniz International Proceedings in Informatics, LIPIcs 179 (Feb. 2020). https://doi.org/10.4230/LIPIcs.DISC.2020.28 arXiv:2002.11321
[56]
Oscar Novo. 2019. Scalable Access Management in IoT Using Blockchain: A Performance Evaluation. IEEE Internet of Things Journal 6, 3 (June 2019), 4694--4701. https://doi.org/10.1109/JIOT.2018.2879679
[57]
Christos Profentzas, Magnus Almgren, and Olaf Landsiedel. 2019. IoTLogBlock: Recording Off-line Transactions of Low-Power IoT Devices Using a Blockchain. In 2019 IEEE 44th Conference on Local Computer Networks (LCN). 414--421. https://doi.org/10.1109/LCN44214.2019.8990728
[58]
Christos Profentzas, Magnus Almgren, and Olaf Landsiedel. 2020. TinyEVM: Off-Chain Smart Contracts on Low-Power IoT Devices. In 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS). 507--518. https://doi.org/10.1109/ICDCS47774.2020.00025
[59]
Sudipta Saha, Olaf Landsiedel, and Mun Choon Chan. 2017. Efficient Many-to-Many Data Sharing Using Synchronous Transmission and TDMA. In 2017 13th International Conference on Distributed Computing in Sensor Systems (DCOSS). 19--26. https://doi.org/10.1109/DCOSS.2017.11
[60]
Eryk Schiller, Elfat Esati, Sina Rafati Niya, and Burkhard Stiller. 2020. Blockchain on MSP430 with IEEE 802.15.4. In 2020 IEEE 45th Conference on Local Computer Networks (LCN). 345--348. https://doi.org/10.1109/LCN48667.2020.9314805
[61]
Fred B Schneider. 1990. Implementing Fault-Tolerant Services Using the State Machine Approach: A Tutorial. Comput. Surveys 22, 4 (Dec. 1990), 299--319. https://doi.org/10.1145/98163.98167
[62]
Yanko Sheiretov, Dave Grundy, Vladimir Zilberstein, Neil Goldfine, and Susan Maley. 2009. MWM-Array Sensors for In Situ Monitoring of High-Temperature Components in Power Plants. IEEE Sensors Journal 9, 11 (Nov. 2009), 1527--1536. https://doi.org/10.1109/JSEN.2009.2019335
[63]
Nibesh Shrestha, Ittai Abraham, Ling Ren, and Kartik Nayak. 2020. On the Optimality of Optimistic Responsiveness. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. ACM, New York, NY, USA, 839--857. https://doi.org/10.1145/3372297.3417284
[64]
M.L. Sichitiu and C. Veerarittiphan. 2003. Simple, Accurate Time Synchronization for Wireless Sensor Networks. In 2003 IEEE Wireless Communications and Networking, 2003. WCNC 2003., Vol. 2. 1266--1273 vol.2. https://doi.org/10.1109/WCNC.2003.1200555
[65]
Atul Singh, Pedro Fonseca, Petr Kuznetsov, Rodrigo Rodrigues, and Petros Maniatis. 2009. Zeno: Eventually Consistent Byzantine-Fault Tolerance. In NSDI, Vol. 9. 169--184.
[66]
Hui Song, Sencun Zhu, and Guohong Cao. 2007. Attack-Resilient Time Synchronization for Wireless Sensor Networks. Ad Hoc Networks 5, 1 (Jan. 2007), 112--125. https://doi.org/10.1016/j.adhoc.2006.05.016
[67]
Suman Srinivasan, Haniph Latchman, John Shea, Tan Wong, and Janice McNair. 2004. Airborne Traffic Surveillance Systems. In Proceedings of the ACM 2nd International Workshop on Video Surveillance & Sensor Networks - VSSN '04. ACM Press, New York, New York, USA, 131. https://doi.org/10.1145/1026799.1026821
[68]
Kun Sun, Peng Ning, and Cliff Wang. 2006. TinySeRSync: Secure and Resilient Time Synchronization in Wireless Sensor Networks. In Proceedings of the 13th ACM Conference on Computer and Communications Security (CCS '06). Association for Computing Machinery, New York, NY, USA, 264--277. https://doi.org/10.1145/1180405.1180439
[69]
Don Torrieri. 2018. Principles of Spread-Spectrum Communication Systems. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-70569-9
[70]
Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau Cheuk Lung, and Paulo Verissimo. 2013. Efficient Byzantine Fault-Tolerance. IEEE Trans. Comput. 62, 1 (Jan. 2013), 16--30. https://doi.org/10.1109/TC.2011.221
[71]
Gerald Wagenknecht, Markus Anwander, and Torsten Braun. 2012. SNOMC: An Overlay Multicast Protocol for Wireless Sensor Networks. In 2012 9th Annual Conference on Wireless On-Demand Network Systems and Services (WONS). 75--78. https://doi.org/10.1109/WONS.2012.6152242
[72]
Chieh-Yih Wan, Andrew T. Campbell, and Lakshman Krishnamurthy. 2002. PSFQ: A Reliable Transport Protocol for Wireless Sensor Networks. In Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications (WSNA '02). Association for Computing Machinery, New York, NY, USA, 1--11. https://doi.org/10.1145/570738.570740
[73]
Shu-Ching Wang, Kuo-Qin Yan, Chin-Ling Ho, and Shun-Sheng Wang. 2014. The Optimal Generalized Byzantine Agreement in Cluster-based Wireless Sensor Networks. Computer Standards & Interfaces 36, 5 (Sept. 2014), 821--830. https://doi.org/10.1016/j.csi.2014.01.005
[74]
Shun-Sheng Wang, Shu-Ching Wang, and Kuo-Qin Yan. 2014. Reaching Trusted Byzantine Agreement in a Cluster-Based Wireless Sensor Network. Wireless Personal Communications 78, 2 (Sept. 2014), 1079--1094. https://doi.org/10.1007/s11277-014-1802-3
[75]
Sravya Yandamuri, Ittai Abraham, Kartik Nayak, and Michael K. Reiter. 2023. Communication-Efficient BFT Using Small Trusted Hardware to Tolerate Minority Corruption. In 26th International Conference on Principles of Distributed Systems (OPODIS 2022) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 253), Eshcar Hillel, Roberto Palmieri, and Etienne Rivière (Eds.). Schloss Dagstuhl -- Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 24:1--24:23. https://doi.org/10.4230/LIPIcs.OPODIS.2022.24
[76]
Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abraham. 2019. HotStuff: BFT Consensus with Linearity and Responsiveness. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing (PODC '19). Association for Computing Machinery, New York, NY, USA, 347--356. https://doi.org/10.1145/3293611.3331591
[77]
Feng Yu, Yaodan Hu, Teng Zhang, and Yier Jin. 2020. Special Issue: Resilient Distributed Estimator with Information Consensus for CPS Security. In 2020 IEEE 38th International Conference on Computer Design (ICCD). 41--44. https://doi.org/10.1109/ICCD50377.2020.00023
[78]
Shanshan Zhao, Shancang Li, and Yufeng Yao. 2019. Blockchain Enabled Industrial Internet of Things Technology. IEEE Transactions on Computational Social Systems 6, 6 (Dec. 2019), 1442--1453. https://doi.org/10.1109/TCSS.2019.2924054
[79]
Wenbing Zhao, Congfeng Jiang, Honghao Gao, Shunkun Yang, and Xiong Luo. 2021. Blockchain-Enabled Cyber--Physical Systems: A Review. IEEE Internet of Things Journal 8, 6 (March 2021), 4023--4034. https://doi.org/10.1109/JIOT.2020.3014864
[80]
Marco Zimmerling, Luca Mottola, and Silvia Santini. 2020. Synchronous Transmissions in Low-Power Wireless: A Survey of Communication Protocols and Network Services. Comput. Surveys 53, 6 (Dec. 2020), 121:1--121:39. https://doi.org/10.1145/3410159

Cited By

View all
  • (2024)TinyBFT: Byzantine Fault-Tolerant Replication for Highly Resource-Constrained Embedded Systems2024 IEEE 30th Real-Time and Embedded Technology and Applications Symposium (RTAS)10.1109/RTAS61025.2024.00026(225-238)Online publication date: 13-May-2024
  • (2024)SensorBFT: Fault-Tolerant Target Localization Using Voronoi Diagrams and Approximate Agreement2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS)10.1109/ICDCS60910.2024.00026(186-197)Online publication date: 23-Jul-2024
  • (2024)The Power of Agreement: Wireless Consensus ExplainedWireless Consensus10.1007/978-3-031-70859-6_1(1-51)Online publication date: 22-Oct-2024

Index Terms

  1. EESMR: Energy Efficient BFT---SMR for the masses

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    Middleware '23: Proceedings of the 24th International Middleware Conference
    November 2023
    334 pages
    ISBN:9798400701771
    DOI:10.1145/3590140
    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Sponsors

    In-Cooperation

    • IFIP: International Federation for Information Processing

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 27 November 2023

    Check for updates

    Author Tags

    1. Byzantine Fault Tolerant
    2. Energy Efficient
    3. State Machine Replication

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Funding Sources

    Conference

    Middleware '23
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 203 of 948 submissions, 21%

    Upcoming Conference

    MIDDLEWARE '24
    25th International Middleware Conference
    December 2 - 6, 2024
    Hong Kong , Hong Kong

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)273
    • Downloads (Last 6 weeks)33
    Reflects downloads up to 12 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)TinyBFT: Byzantine Fault-Tolerant Replication for Highly Resource-Constrained Embedded Systems2024 IEEE 30th Real-Time and Embedded Technology and Applications Symposium (RTAS)10.1109/RTAS61025.2024.00026(225-238)Online publication date: 13-May-2024
    • (2024)SensorBFT: Fault-Tolerant Target Localization Using Voronoi Diagrams and Approximate Agreement2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS)10.1109/ICDCS60910.2024.00026(186-197)Online publication date: 23-Jul-2024
    • (2024)The Power of Agreement: Wireless Consensus ExplainedWireless Consensus10.1007/978-3-031-70859-6_1(1-51)Online publication date: 22-Oct-2024

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media