Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3567600.3568149acmotherconferencesArticle/Chapter ViewAbstractPublication PagesmobicomConference Proceedingsconference-collections
short-paper
Public Access

Plume tracing simulations using multiple autonomous underwater vehicles

Published: 29 December 2022 Publication History

Abstract

This paper describes the simulation of a fleet of Autonomous underwater vehicles (AUVs) used for plume detection and plume source tracking using ROS and Gazebo. This is achieved by the integration of underwater vehicle simulation tools that model the vehicle, plume, underwater environment, and its dynamics. The plume tracing is done by a trajectory planner, or a leader robot followed by a group of robots planning their positions in a geometric pattern. The results discussed in this paper demonstrate the platform that has been setup for advanced applications using a fleet of AUVs.

References

[1]
Manhães, M. M. M., Scherer, S. A., Voss, M., Douat, L. R., & Rauschenbach, T. (2016, September). UUV simulator: A gazebo-based package for underwater intervention and multi-robot simulation. In OCEANS 2016 MTS/IEEE Monterey (pp. 1-8). IEEE.
[2]
Sousa, A., Madureira, L., Coelho, J., Pinto, J., Pereira, J., Sousa, J. B., & Dias, P. (2012). LAUV: The man-portable autonomous underwater vehicle. IFAC Proceedings Volumes, 45(5), 268-274.
[3]
da Silva, J. E., Terra, B., Martins, R., & de Sousa, J. B. (2007, August). Modeling and simulation of the lauv autonomous underwater vehicle. In 13th IEEE IFAC international conference on methods and models in automation and robotics (Vol. 1, p. 9867115). Szczecin, Poland Szczecin, Poland.
[4]
Tian, Y., & Zhang, A. (2010, March). Simulation environment and guidance system for AUV tracing chemical plume in 3-dimensions. In 2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010) (Vol. 1, pp. 407-411). IEEE.
[5]
Farrell, J. A., Murlis, J., Long, X., Li, W. E. I., & Cardé, R. T. (2002). Filament-based atmospheric dispersion model to achieve short time-scale structure of odor plumes. Environmental fluid mechanics, 2(1), 143-169.
[6]
Mestres, M., Sierra, J. P., Sánchez-Arcilla, A., Del Río, J. G., Wolf, T., Rodríguez, A., & Ouillon, S. (2003). Modelling of the Ebro River plume. Validation with field observations. Scientia Marina, 67(4), 379-391.
[7]
Yoerger, D. R., Cooke, J. G., & Slotine, J. J. (1990). The influence of thruster dynamics on underwater vehicle behavior and their incorporation into control system design. IEEE Journal of Oceanic Engineering, 15(3), 167-178.
[8]
Bessa, W. M., Dutra, M. S., & Kreuzer, E. (2005, November). Thruster dynamics compensation for the positioning of underwater robotic vehicles through a fuzzy sliding mode based approach. In COBEM-18th International Congress of Mechanical Engineering, Ouro Preto (Brasil).
[9]
Engelhardtsen, Ø. (2007). 3D AUV Collision Avoidance (Master's thesis, Institutt for teknisk kybernetikk).
[10]
Furrer, F., Burri, M., Achtelik, M., & Siegwart, R. (2016). RotorS—A modular gazebo MAV simulator framework. In Robot operating system (ROS) (pp. 595-625). Springer, Cham.
[11]
Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., & Stryk, O. V. (2012, November). Comprehensive simulation of quadrotor uavs using ros and gazebo. In International conference on simulation, modeling, and programming for autonomous robots (pp. 400-411). Springer, Berlin, Heidelberg.
[12]
Fossen, T. I. (2011). Handbook of marine craft hydrodynamics and motion control. John Wiley & Sons.
[13]
Nomenclature for Treating the Motion of a Submerged Body Through a Fluid: Report of the American Towing Tank Conference. Society of Naval Architects and Marine Engineers, 1950.
[14]
Farrell, J. A., Pang, S., & Li, W. (2005). Chemical plume tracing via an autonomous underwater vehicle. IEEE Journal of Oceanic Engineering, 30(2), 428-442
[15]
Camilli, R., Reddy, C. M., Yoerger, D. R., Van Mooy, B. A., Jakuba, M. V., Kinsey, J. C., ... & Maloney, J. V. (2010). Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science, 330(6001), 201-204.
[16]
Cannell, C. J., Gadre, A. S., & Stilwell, D. J. (2006, September). Boundary tracking and rapid mapping of a thermal plume using an autonomous vehicle. In OCEANS 2006 (pp. 1-6). IEEE.
[17]
Das, J., Rajany, K., Frolovy, S., Pyy, F., Ryany, J., Caronz, D. A., & Sukhatme, G. S. (2010, May). Towards marine bloom trajectory prediction for AUV mission planning. In 2010 IEEE International Conference on Robotics and Automation (pp. 4784-4790). IEEE.
[18]
Pang, S. (2010, September). Plume source localization for AUV based autonomous hydrothermal vent discovery. In OCEANS 2010 MTS/IEEE SEATTLE (pp. 1-8). IEEE.
[19]
Pang, S., & Farrell, J. A. (2006). Chemical plume source localization. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 36(5), 1068-1080. [13] Nomenclature for Treating the Motion of a Submerged Body Through a Fluid: Report of the American Towing Tank Conference. Society of Naval Architects and Marine Engineers, 1950.
[20]
Smith, R. N., Chao, Y., Li, P. P., Caron, D. A., Jones, B. H., & Sukhatme, G. S. (2010). Planning and implementing trajectories for autonomous underwater vehicles to track evolving ocean processes based on predictions from a regional ocean model. The International Journal of Robotics Research, 29(12), 1475-1497.
[21]
Prats, M., Perez, J., Fernandez, J. J., & Sanz, P. J. (2012, October). An open source tool for simulation and supervision of underwater intervention missions. In 2012 IEEE/RSJ international conference on Intelligent Robots and Systems (pp. 2577-2582). IEEE.
[22]
Peng, Z., Zhou, Z., Cui, J. H., & Shi, Z. J. (2009, October). Aqua-Net: An underwater sensor network architecture: Design, implementation, and initial testing. In OCEANS 2009 (pp. 1-8). IEEE.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
WUWNet '22: Proceedings of the 16th International Conference on Underwater Networks & Systems
November 2022
190 pages
ISBN:9781450399524
DOI:10.1145/3567600
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 29 December 2022

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. AUV
  2. Gazebo
  3. ROS
  4. plume
  5. robot fleet

Qualifiers

  • Short-paper
  • Research
  • Refereed limited

Funding Sources

Conference

WUWNet'22

Acceptance Rates

Overall Acceptance Rate 84 of 180 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 374
    Total Downloads
  • Downloads (Last 12 months)295
  • Downloads (Last 6 weeks)36
Reflects downloads up to 15 Feb 2025

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Login options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media