Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3561613.3561627acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicccvConference Proceedingsconference-collections
research-article
Open access

Pulmonary Nodule Detection Based on RPN with Squeeze‐and‐Excitation Block

Published: 09 November 2022 Publication History

Abstract

Early detection of lung cancer is a crucial step to improve the chances of survival. To detect the pulmonary nodules, various methods are proposed including one-stage object detection methods (e.g., YOLO, SSD) and two-stage detection methods(e.g., Faster RCNN). Two-stage methods are more accurate than one-stage, thus more likely used in the detection of a small object. Faster RCNN as a two-stage method, ensuring more efficient and accurate region proposal generation, is consistent with our task’s objective, that is, detecting small 3-D nodules from large CT image volume. Therefore, in our work, we used 3-D region proposal network (RPN) proposed in Faster RCNN to detect nodules. However, different from natural images with clear boundaries and textures, pulmonary nodules have different types and locations, which are hard to recognize. Thus with the thought that if the network can learn more features of the nodules, the performance would be better, we also applied the "Squeeze-and-Excitation" blocks to the 3-D RPN, which we term it as SE-Res RPN. The experimental results show that the sensitivity of SE-Res RPN in 10-fold cross-validation of LUNA 16 is 93.7, which achieves great performance without a false positive reduction stage.

References

[1]
Samuel G Armato III, Geoffrey McLennan, Luc Bidaut, Michael F McNitt-Gray, Charles R Meyer, Anthony P Reeves, Binsheng Zhao, Denise R Aberle, Claudia I Henschke, Eric A Hoffman, 2011. The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Medical physics 38, 2 (2011), 915–931.
[2]
Michael Baumgartner, Paul F. Jäger, Fabian Isensee, and Klaus H. Maier-Hein. 2021. nnDetection: A Self-configuring Method for Medical Object Detection. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, Marleen de Bruijne, Philippe C. Cattin, Stéphane Cotin, Nicolas Padoy, Stefanie Speidel, Yefeng Zheng, and Caroline Essert (Eds.). Vol. 12905. Springer International Publishing, Cham, 530–539. https://doi.org/10.1007/978-3-030-87240-3_51
[3]
Sean Blandin Knight, Phil A. Crosbie, Haval Balata, Jakub Chudziak, Tracy Hussell, and Caroline Dive. 2017. Progress and Prospects of Early Detection in Lung Cancer. Open Biology 7, 9 (2017), 170070. https://doi.org/10.1098/rsob.170070
[4]
Haichao Cao, Hong Liu, Enmin Song, Guangzhi Ma, Renchao Jin, Xiangyang Xu, Tengying Liu, and Chih-Cheng Hung. 2020. A Two-Stage Convolutional Neural Networks for Lung Nodule Detection. IEEE Journal of Biomedical and Health Informatics (2020), 1–1. https://doi.org/10.1109/JBHI.2019.2963720
[5]
Jia Ding, Aoxue Li, Zhiqiang Hu, and Liwei Wang. 2017. Accurate Pulmonary Nodule Detection in Computed Tomography Images Using Deep Convolutional Neural Networks. In Medical Image Computing and Computer Assisted Intervention - MICCAI 2017, Maxime Descoteaux, Lena Maier-Hein, Alfred Franz, Pierre Jannin, D. Louis Collins, and Simon Duchesne (Eds.). Vol. 10435. Springer International Publishing, Cham, 559–567. https://doi.org/10.1007/978-3-319-66179-7_64
[6]
Qi Dou, Hao Chen, Lequan Yu, Jing Qin, and Pheng-Ann Heng. 2017. Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection. IEEE Transactions on Biomedical Engineering 64, 7 (2017), 1558–1567. https://doi.org/10.1109/TBME.2016.2613502
[7]
Andrey A. Dovganich, Alexander V. Khvostikov, Yakov A. Pchelintsev, Andrey A. Krylov, Yong Ding, and Mylene C. Q. Farias. 2022. Automatic Out-of-Distribution Detection Methods for Improving the Deep Learning Classification of Pulmonary X-ray Images. Journal of Image and Graphics 10, 2 (2022). https://doi.org/10.18178/joig.10.2.56-63
[8]
Ivan Drokin and Elena Ericheva. 2021. Deep Learning on Point Clouds for False Positive Reduction at Nodule Detection in Chest CT Scans. In Analysis of Images, Social Networks and Texts, Wil M. P. van der Aalst, Vladimir Batagelj, Dmitry I. Ignatov, Michael Khachay, Olessia Koltsova, Andrey Kutuzov, Sergei O. Kuznetsov, Irina A. Lomazova, Natalia Loukachevitch, Amedeo Napoli, Alexander Panchenko, Panos M. Pardalos, Marcello Pelillo, Andrey V. Savchenko, and Elena Tutubalina (Eds.). Vol. 12602. Springer International Publishing, Cham, 201–215. https://doi.org/10.1007/978-3-030-72610-2_15
[9]
Ivan Drokin and Elena Ericheva. 2021. End-to-End Lung Nodule Detection Framework with Model-Based Feature Projection Block. In Machine Learning in Medical Imaging, Chunfeng Lian, Xiaohuan Cao, Islem Rekik, Xuanang Xu, and Pingkun Yan (Eds.). Vol. 12966. Springer International Publishing, Cham, 91–100. https://doi.org/10.1007/978-3-030-87589-3_10
[10]
Salsabil Amin El-Regaily, Mohammed Abdel Megeed Salem, Mohamed Hassan Abdel Aziz, and Mohamed Ismail Roushdy. 2020. Multi-View Convolutional Neural Network for Lung Nodule False Positive Reduction. Expert Systems with Applications 162 (2020), 113017. https://doi.org/10.1016/j.eswa.2019.113017
[11]
Jiansheng Fang, Jingwen Wang, Anwei Li, Yuguang Yan, Yonghe Hou, Chao Song, Hongbo Liu, and Jiang Liu. 2022. Siamese Encoder-based Spatial-Temporal Mixer for Growth Trend Prediction of Lung Nodules on CT Scans. arXiv preprint arXiv:2206.03049(2022).
[12]
Jiansheng Fang, Yanwu Xu, Yitian Zhao, Yuguang Yan, Junling Liu, and Jiang Liu. 2021. Weighing features of lung and heart regions for thoracic disease classification. BMC Medical Imaging 21, 1 (2021), 1–12.
[13]
Paul K. J. Han, William M. P. Klein, and Neeraj K. Arora. 2011. Varieties of Uncertainty in Health Care: A Conceptual Taxonomy. Medical Decision Making 31, 6 (2011), 828–838. https://doi.org/10.1177/0272989X10393976
[14]
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition. 770–778.
[15]
Johannes Hofmanninger, Forian Prayer, Jeanny Pan, Sebastian Röhrich, Helmut Prosch, and Georg Langs. 2020. Automatic lung segmentation in routine imaging is primarily a data diversity problem, not a methodology problem. European Radiology Experimental 4, 1 (2020), 1–13.
[16]
Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu. 2020. Squeeze-and-Excitation Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 42, 8(2020), 2011–2023. https://doi.org/10.1109/TPAMI.2019.2913372
[17]
Hongsheng Jin, Zongyao Li, Ruofeng Tong, and Lanfen Lin. 2018. A Deep 3D Residual CNN for False-Positive Reduction in Pulmonary Nodule Detection. Medical Physics 45, 5 (2018), 2097–2107. https://doi.org/10.1002/mp.12846
[18]
Naji Khosravan and Ulas Bagci. 2018. S4ND: Single-Shot Single-Scale Lung Nodule Detection. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, Alejandro F. Frangi, Julia A. Schnabel, Christos Davatzikos, Carlos Alberola-López, and Gabor Fichtinger (Eds.). Vol. 11071. Springer International Publishing, Cham, 794–802. https://doi.org/10.1007/978-3-030-00934-2_88
[19]
Yuemeng Li and Yang Fan. 2020. DeepSEED: 3D Squeeze-and-Excitation Encoder-Decoder Convolutional Neural Networks for Pulmonary Nodule Detection. In 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). IEEE, Iowa City, IA, USA, 1866–1869. https://doi.org/10.1109/ISBI45749.2020.9098317
[20]
Fangzhou Liao, Ming Liang, Zhe Li, Xiaolin Hu, and Sen Song. 2019. Evaluate the Malignancy of Pulmonary Nodules Using the 3D Deep Leaky Noisy-or Network. IEEE Transactions on Neural Networks and Learning Systems 30, 11(2019), 3484–3495. https://doi.org/10.1109/TNNLS.2019.2892409 arxiv:1711.08324
[21]
Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. 2017. Feature Pyramid Networks for Object Detection. arXiv:1612.03144 [cs](2017). arxiv:1612.03144 [cs]
[22]
Jingya Liu, Oguz Akin, and Yingli Tian. 2021. Rethinking Pulmonary Nodule Detection in Multi-view 3D CT Point Cloud Representation. In Machine Learning in Medical Imaging, Chunfeng Lian, Xiaohuan Cao, Islem Rekik, Xuanang Xu, and Pingkun Yan (Eds.). Vol. 12966. Springer International Publishing, Cham, 80–90. https://doi.org/10.1007/978-3-030-87589-3_9
[23]
Jingya Liu, Liangliang Cao, Oguz Akin, and Yingli Tian. 2019. 3DFPN-HS $$$$ 2 : 3D Feature Pyramid Network Based High Sensitivity and Specificity Pulmonary Nodule Detection. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2019, Dinggang Shen, Tianming Liu, Terry M. Peters, Lawrence H. Staib, Caroline Essert, Sean Zhou, Pew-Thian Yap, and Ali Khan (Eds.). Vol. 11769. Springer International Publishing, Cham, 513–521. https://doi.org/10.1007/978-3-030-32226-7_57
[24]
Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg. 2016. Ssd: Single shot multibox detector. In European conference on computer vision. Springer, 21–37.
[25]
Awais Mansoor, Ulas Bagci, Brent Foster, Ziyue Xu, Georgios Z Papadakis, Les R Folio, Jayaram K Udupa, and Daniel J Mollura. 2015. Segmentation and image analysis of abnormal lungs at CT: current approaches, challenges, and future trends. Radiographics 35, 4 (2015), 1056.
[26]
Xavier Rafael-Palou, Anton Aubanell, Mario Ceresa, Vicent Ribas, Gemma Piella, and Miguel A González Ballester. 2021. Detection, growth quantification and malignancy prediction of pulmonary nodules using deep convolutional networks in follow-up CT scans. arXiv preprint arXiv:2103.14537(2021).
[27]
Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition. 779–788.
[28]
Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2017. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 39, 6(2017), 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031
[29]
Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (Eds.). Vol. 9351. Springer International Publishing, Cham, 234–241. https://doi.org/10.1007/978-3-319-24574-4_28
[30]
Arnaud Arindra Adiyoso Setio, Francesco Ciompi, Geert Litjens, Paul Gerke, Colin Jacobs, Sarah J. van Riel, Mathilde Marie Winkler Wille, Matiullah Naqibullah, Clara I. Sanchez, and Bram van Ginneken. 2016. Pulmonary Nodule Detection in CT Images: False Positive Reduction Using Multi-View Convolutional Networks. IEEE Transactions on Medical Imaging 35, 5 (2016), 1160–1169. https://doi.org/10.1109/TMI.2016.2536809
[31]
Arnaud Arindra Adiyoso Setio, Alberto Traverso, Thomas de Bel, Moira S. N. Berens, Cas van den Bogaard, Piergiorgio Cerello, Hao Chen, Qi Dou, Maria Evelina Fantacci, Bram Geurts, Robbert van der Gugten, Pheng Ann Heng, Bart Jansen, Michael M. J. de Kaste, Valentin Kotov, Jack Yu-Hung Lin, Jeroen T. M. C. Manders, Alexander Sónora-Mengana, Juan Carlos García-Naranjo, Evgenia Papavasileiou, Mathias Prokop, Marco Saletta, Cornelia M. Schaefer-Prokop, Ernst T. Scholten, Luuk Scholten, Miranda M. Snoeren, Ernesto Lopez Torres, Jef Vandemeulebroucke, Nicole Walasek, Guido C. A. Zuidhof, Bram van Ginneken, and Colin Jacobs. 2017. Validation, Comparison, and Combination of Algorithms for Automatic Detection of Pulmonary Nodules in Computed Tomography Images: The LUNA16 Challenge. Medical Image Analysis 42 (2017), 1–13. https://doi.org/10.1016/j.media.2017.06.015 arxiv:1612.08012
[32]
Rebecca L. Siegel, Kimberly D. Miller, and Ahmedin Jemal. 2019. Cancer Statistics, 2019. CA: A Cancer Journal for Clinicians 69, 1 (2019), 7–34. https://doi.org/10.3322/caac.21551
[33]
Tao Song, Jieneng Chen, Xiangde Luo, Yechong Huang, Xinglong Liu, Ning Huang, Yinan Chen, Zhaoxiang Ye, Huaqiang Sheng, Shaoting Zhang, and Guotai Wang. 2020. CPM-Net: A 3D Center-Points Matching Network for Pulmonary Nodule Detection in CT Scans. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, Anne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, and Leo Joskowicz (Eds.). Vol. 12266. Springer International Publishing, Cham, 550–559. https://doi.org/10.1007/978-3-030-59725-2_53
[34]
Lindsey A. Torre, Freddie Bray, Rebecca L. Siegel, Jacques Ferlay, Joannie Lortet-Tieulent, and Ahmedin Jemal. 2015. Global Cancer Statistics, 2012: Global Cancer Statistics, 2012. CA: A Cancer Journal for Clinicians 65, 2 (2015), 87–108. https://doi.org/10.3322/caac.21262
[35]
J.W. Wallis, T.R. Miller, C.A. Lerner, and E.C. Kleerup. Dec./1989. Three-Dimensional Display in Nuclear Medicine. IEEE Transactions on Medical Imaging 8, 4 (Dec./1989), 297–230. https://doi.org/10.1109/42.41482
[36]
Bin Wang, Guojun Qi, Sheng Tang, Liheng Zhang, Lixi Deng, and Yongdong Zhang. 2018. Automated Pulmonary Nodule Detection: High Sensitivity with Few Candidates. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, Alejandro F. Frangi, Julia A. Schnabel, Christos Davatzikos, Carlos Alberola-López, and Gabor Fichtinger (Eds.). Vol. 11071. Springer International Publishing, Cham, 759–767. https://doi.org/10.1007/978-3-030-00934-2_84
[37]
Jun Wang, Jiawei Wang, Yaofeng Wen, Hongbing Lu, Tianye Niu, Jiangfeng Pan, and Dahong Qian. 2019. Pulmonary Nodule Detection in Volumetric Chest CT Scans Using CNNs-Based Nodule-Size-Adaptive Detection and Classification. IEEE Access 7(2019), 46033–46044. https://doi.org/10.1109/ACCESS.2019.2908195
[38]
Sunyi Zheng, Jiapan Guo, Xiaonan Cui, Raymond N. J. Veldhuis, Matthijs Oudkerk, and Peter M. A. van Ooijen. 2020. Automatic Pulmonary Nodule Detection in CT Scans Using Convolutional Neural Networks Based on Maximum Intensity Projection. IEEE Transactions on Medical Imaging 39, 3 (2020), 797–805. https://doi.org/10.1109/TMI.2019.2935553
[39]
Qing-hua Zhou, Ya-guang Fan, Hong Bu, Ying Wang, Ning Wu, Yun-chao Huang, Guiqi Wang, Xin-yun Wang, and You-lin Qiao. 2015. China national lung cancer screening guideline with low-dose computed tomography (2015 version). Thoracic Cancer 6, 6 (2015), 812–818. https://doi.org/10.1111/1759-7714.12287
[40]
Wentao Zhu, Chaochun Liu, Wei Fan, and Xiaohui Xie. 2018. DeepLung: Deep 3D Dual Path Nets for Automated Pulmonary Nodule Detection and Classification. arXiv:1801.09555 [cs](2018). arxiv:1801.09555 [cs]

Cited By

View all
  • (2024)Study of a Deep Convolution Network with Enhanced Region Proposal Network in the Detection of Cancerous Lung TumorsBioengineering10.3390/bioengineering1105051111:5(511)Online publication date: 19-May-2024

Index Terms

  1. Pulmonary Nodule Detection Based on RPN with Squeeze‐and‐Excitation Block

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ICCCV '22: Proceedings of the 5th International Conference on Control and Computer Vision
    August 2022
    241 pages
    ISBN:9781450397315
    DOI:10.1145/3561613
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 09 November 2022

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Pulmonary nodule detection
    2. Region proposal network
    3. Squeeze-and-excitation block

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    ICCCV 2022

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)143
    • Downloads (Last 6 weeks)24
    Reflects downloads up to 13 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Study of a Deep Convolution Network with Enhanced Region Proposal Network in the Detection of Cancerous Lung TumorsBioengineering10.3390/bioengineering1105051111:5(511)Online publication date: 19-May-2024

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media