Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3549737.3549747acmotherconferencesArticle/Chapter ViewAbstractPublication PagessetnConference Proceedingsconference-collections
research-article

Modeling the off-target effects of CRISPR-Cas9 experiments for the treatment of Duchenne Muscular Dystrophy

Published: 09 September 2022 Publication History

Abstract

Duchenne Muscular Dystrophy (DMD) is a neuromuscular disorder caused by the absence of the dystrophin protein. If left untreated, it causes movement problems at the age of 10-12 years, and death occurs in the 20-30 years due to heart failure. There is currently no cure for this disease, only symptomatic treatment. Genome editing approaches like the CRISPR-Cas9 technology can provide new opportunities to ameliorate the disease by eliminating DMD mutations and restoring dystrophin expression. While it is true that on-target activity can be influenced by the guide specificity, the proposed approach focuses on the devastating results that off-target cleavage can cause (e.g., unexpected mutations). This is why reducing off-target effects is the first priority in guide design. The rapid growth of the Artificial Intelligence field has helped researchers employ artificial feature extraction and Machine Learning approaches to evaluate the potential off-target scores. This work presents our approach in evaluating off-targets of CRISPR-Cas9 gene editing specifically for the DMD disorder, using Machine Learning. We offer a comparison between four regression methods that predict the insertions-deletions (indels) produced based on a pair guide RNA and the equivalent off-target and evaluate the results using the Spearman correlation metric. We propose the most suitable method, a Decision Tree Regressor, for this problem and a comparison of the results with some state-of-art tools. The performance of our tool with Cross Validation is better than the independent performance of the other tools except from Elevation which performed about as good as ours.

References

[1]
Shiran Abadi, Winston X. Yan, David Amar, and Itay Mayrose. 2017. A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action. PLoS computational biology 13, 10 (16 Oct 2017), e1005807–e1005807. https://doi.org/10.1371/journal.pcbi.1005807 29036168[pmid].
[2]
Jeffrey S. Chamberlain, Niclas Bengtsson, and Stephen D. Hauschka. December 21, 2017. MUSCLE-SPECIFIC CRISPR/CAS9 EDITING OF GENES. https://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&d=PG01&s1=20170362635.PGNR.
[3]
Yongchang Chen, Yinghui Zheng, Yu Kang, Weili Yang, Yuyu Niu, Xiangyu Guo, Zhuchi Tu, Chenyang Si, Hong Wang, Ruxiao Xing, Xiuqiong Pu, Shang-Hsun Yang, Shihua Li, Weizhi Ji, and Xiao-Jiang Li. 2015. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Human Molecular Genetics 24, 13 (04 2015), 3764–3774. https://doi.org/10.1093/hmg/ddv120 arXiv:https://academic.oup.com/hmg/article-pdf/24/13/3764/13911562/ddv120.pdf
[4]
Jean-Paul Concordet and Maximilian Haeussler. 2018. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic acids research 46, W1 (02 Jul 2018), W242–W245. https://doi.org/10.1093/nar/gky354 29762716[pmid].
[5]
Wei-Jing Dai, Li-Yao Zhu, Zhong-Yi Yan, Yong Xu, Qilong Wang, and Xiao-Jie Lu. 2016. CRISPR-Cas9 for in vivo Gene Therapy: Promise and Hurdles. Molecular Therapy. Nucleic Acids 5 (08 2016). https://doi.org/10.1038/mtna.2016.58
[6]
John G. Doench, Nicolo Fusi, Meagan Sullender, Mudra Hegde, Emma W. Vaimberg, Katherine F. Donovan, Ian Smith, Zuzana Tothova, Craig Wilen, Robert Orchard, Herbert W. Virgin, Jennifer Listgarten, and David E. Root. 2016. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature biotechnology 34, 2 (Feb 2016), 184–191. https://doi.org/10.1038/nbt.3437 26780180[pmid].
[7]
Esra Erkut and Toshifumi Yokota. 2022. CRISPR Therapeutics for Duchenne Muscular Dystrophy. International Journal of Molecular Sciences 23, 3 (2022). https://doi.org/10.3390/ijms23031832
[8]
Charles A. Gersbach, Isaac B. Hilton, Pablo Perez-Pinera, Ami M. Kabadi, Pratiksha I. Thakore, David G. Ousterout, and Joshua B. Black. April 26, 2020. RNA-GUIDED GENE EDITING AND GENE REGULATION. https://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&d=PG01&s1=20210002665.PGNR.
[9]
Maximilian Haeussler, Kai Schönig, Hélène Eckert, Alexis Eschstruth, Joffrey Mianné, Jean-Baptiste Renaud, Sylvie Schneider-Maunoury, Alena Shkumatava, Lydia Teboul, Jim Kent, Jean-Stephane Joly, and Jean-Paul Concordet. 2016. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biology 17, 1 (05 Jul 2016), 148. https://doi.org/10.1186/s13059-016-1012-2
[10]
Kevin L. Howe, Premanand Achuthan, James Allen, Jamie Allen, Jorge Alvarez-Jarreta, M. Ridwan Amode, Irina M. Armean, Andrey G. Azov, Ruth Bennett, Jyothish Bhai, and Konstantinos Billis. 2021. Ensembl 2021. Nucleic Acids Research 49, D1 (08 Jan 2021), D884–D891. https://doi.org/10.1093/nar/gkaa942
[11]
Patrick D. Hsu, David A. Scott, Joshua A. Weinstein, F. Ann Ran, Silvana Konermann, Vineeta Agarwala, Yinqing Li, Eli J. Fine, Xuebing Wu, Ophir Shalem, Thomas J. Cradick, Luciano A. Marraffini, Gang Bao, and Feng Zhang. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology 31, 9 (01 Sep 2013), 827–832. https://doi.org/10.1038/nbt.2647
[12]
Benjamin P. Kleinstiver, Vikram Pattanayak, Michelle S. Prew, Shengdar Q. Tsai, Nhu T. Nguyen, Zongli Zheng, and J. Keith Joung. 2016. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 7587 (01 Jan 2016), 490–495. https://doi.org/10.1038/nature16526
[13]
Nigel G. Laing, Mark R. Davis, Klair Bayley, Sue Fletcher, and Steve D. Wilton. 2011. Molecular diagnosis of duchenne muscular dystrophy: past, present and future in relation to implementing therapies. The Clinical biochemist. Reviews 32, 3 (Aug 2011), 129–134. https:// .ncbi.nlm.nih.gov/21912442
[14]
Annalisa Lattanzi, Stephanie Duguez, Arianna Moiani, Araksya Izmiryan, Elena Barbon, Samia Martin, Kamel Mamchaoui, Vincent Mouly, Francesco Bernardi, Fulvio Mavilio, and Matteo Bovolenta. 2017. Correction of the Exon 2 Duplication in DMD Myoblasts by a Single CRISPR/Cas9 System. Molecular therapy. Nucleic acids 7 (16 Jun 2017), 11–19. https://doi.org/10.1016/j.omtn.2017.02.004 28624187[pmid].
[15]
Hongmei Lisa Li, Naoko Fujimoto, Noriko Sasakawa, Saya Shirai, Tokiko Ohkame, Tetsushi Sakuma, Michihiro Tanaka, Naoki Amano, Akira Watanabe, Hidetoshi Sakurai, Takashi Yamamoto, Shinya Yamanaka, and Akitsu Hotta. 2015. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem cell reports 4, 1 (13 Jan 2015), 143–154. https://doi.org/10.1016/j.stemcr.2014.10.013 25434822[pmid].
[16]
Jennifer Listgarten, Michael Weinstein, Benjamin P. Kleinstiver, Alexander A. Sousa, J. Keith Joung, Jake Crawford, Kevin Gao, Luong Hoang, Melih Elibol, John G. Doench, and Nicolo Fusi. 2018. Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs. Nature Biomedical Engineering 2, 1 (01 Jan 2018), 38–47. https://doi.org/10.1038/s41551-017-0178-6
[17]
Guanqing Liu, Yong Zhang, and Tao Zhang. 2020. Computational approaches for effective CRISPR guide RNA design and evaluation. Computational and Structural Biotechnology Journal 18 (01 Jan 2020), 35–44. https://www.sciencedirect.com/science/article/pii/S2001037019303551
[18]
Chengzu Long, Leonela Amoasii, Alex A. Mireault, John R. McAnally, Hui Li, Efrain Sanchez-Ortiz, Samadrita Bhattacharyya, John M. Shelton, Rhonda Bassel-Duby, and Eric N. Olson. 2016. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science (New York, N.Y.) 351, 6271 (22 Jan 2016), 400–403. https://doi.org/10.1126/science.aad5725 26721683[pmid].
[19]
Chengzu Long, John R. McAnally, John M. Shelton, Alex A. Mireault, Rhonda Bassel-Duby, and Eric N. Olson. 2014. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science (New York, N.Y.) 345, 6201 (05 Sep 2014), 1184–1188. https://doi.org/10.1126/science.1254445 25123483[pmid].
[20]
J. Marmur and P. Doty. 1962. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. Journal of Molecular Biology 5, 1 (1962), 109–118. https://doi.org/10.1016/S0022-2836(62)80066-7
[21]
Aaron McKenna and Jay Shendure. 2018. FlashFry: a fast and flexible tool for large-scale CRISPR target design. BMC Biology 16, 1 (05 Jul 2018), 74. https://doi.org/10.1186/s12915-018-0545-0
[22]
Christopher E. Nelson, Chady H. Hakim, David G. Ousterout, Pratiksha I. Thakore, Eirik A. Moreb, Ruth M. Castellanos Rivera, Sarina Madhavan, Xiufang Pan, F. Ann Ran, Winston X. Yan, Aravind Asokan, Feng Zhang, Dongsheng Duan, and Charles A. Gersbach. 2016. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science (New York, N.Y.) 351, 6271 (22 Jan 2016), 403–407. https://doi.org/10.1126/science.aad5143 26721684[pmid].
[23]
Christopher E. Nelson, Yaoying Wu, Matthew P. Gemberling, Matthew L. Oliver, Matthew A. Waller, Joel D. Bohning, Jacqueline N. Robinson-Hamm, Karen Bulaklak, Ruth M. Castellanos Rivera, Joel H. Collier, Aravind Asokan, and Charles A. Gersbach. 2019. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nature Medicine 25, 3 (01 Mar 2019), 427–432. https://doi.org/10.1038/s41591-019-0344-3
[24]
Eric N. OLSON and Chengzu LONG. November 26, 2020. COMPOSITIONS AND METHODS FOR CORRECTING DYSTROPHIN MUTATIONS IN HUMAN CARDIOMYOCYTES. https://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&d=PG01&s1=20200370042.PGNR.
[25]
Eric N. OLSON, Chengzu LONG, John R. MCANALLY, John M. SHELTON, and Rhonda BASSEL-DUBY. March 3, 2016. PREVENTION OF MUSCULAR DYSTROPHY BY CRISPR/CAS9-MEDIATED GENE EDITING. https://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&d=PG01&s1=20160058889.PGNR.
[26]
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.
[27]
F. A. Ran, P. D. Hsu, J. Wright, V. Agarwala, D. A. Scott, and F. Zhang. 2013. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8, 11 (Nov 2013), 2281–2308.
[28]
John SantaLucia. 1998. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proceedings of the National Academy of Sciences 95, 4 (1998), 1460–1465. https://doi.org/10.1073/pnas.95.4.1460 arXiv:https://www.pnas.org/content/95/4/1460.full.pdf
[29]
Ian M. Slaymaker, Linyi Gao, Bernd Zetsche, David A. Scott, Winston X. Yan, and Feng Zhang. 2016. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 6268 (2016), 84–88. https://doi.org/10.1126/science.aad5227 arXiv:https://www.science.org/doi/pdf/10.1126/science.aad5227
[30]
Manuel Stemmer, Thomas Thumberger, Maria del Sol Keyer, Joachim Wittbrodt, and Juan L. Mateo. 2017. Correction: CCTop: An Intuitive, Flexible and Reliable CRISPR/Cas9 Target Prediction Tool. PLOS ONE 12, 4 (04 2017), 1–1. https://doi.org/10.1371/journal.pone.0176619
[31]
Deborah M. Thurtle-Schmidt and Te-Wen Lo. 2018. Molecular biology at the cutting edge: A review on CRISPR/CAS9 gene editing for undergraduates. Biochemistry and Molecular Biology Education 46, 2 (2018), 195–205. https://doi.org/10.1002/bmb.21108 arXiv:https://iubmb.onlinelibrary.wiley.com/doi/pdf/10.1002/bmb.21108
[32]
Shengdar Q. Tsai, Zongli Zheng, Nhu T. Nguyen, Matthew Liebers, Ved V. Topkar, Vishal Thapar, Nicolas Wyvekens, Cyd Khayter, A. John Iafrate, Long P. Le, Martin J. Aryee, and J. Keith Joung. 2015. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nature Biotechnology 33, 2 (01 Feb 2015), 187–197. https://doi.org/10.1038/nbt.3117
[33]
R. B. Wallace, J. Shaffer, R. F. Murphy, J. Bonner, T. Hirose, and K. Itakura. 1979. Hybridization of synthetic oligodeoxyribonucleotides to phi chi 174 DNA: the effect of single base pair mismatch. Nucleic Acids Res 6, 11 (Aug 1979), 3543–3557.
[34]
Jun Wang, Xiuqing Zhang, Lixin Cheng, and Yonglun Luo. 2020. An overview and metanalysis of machine and deep learning-based CRISPR gRNA design tools. RNA Biology 17, 1 (2020), 13–22. https://doi.org/10.1080/15476286.2019.1669406 arXiv:https://doi.org/10.1080/15476286.2019.1669406
[35]
Hao Yin, Chun-Qing Song, Joseph R. Dorkin, Lihua J. Zhu, Yingxiang Li, Qiongqiong Wu, Angela Park, Junghoon Yang, Sneha Suresh, Aizhan Bizhanova, Ankit Gupta, Mehmet F. Bolukbasi, Stephen Walsh, Roman L. Bogorad, Guangping Gao, Zhiping Weng, Yizhou Dong, Victor Koteliansky, Scot A. Wolfe, Robert Langer, Wen Xue, and Daniel G. Anderson. 2016. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nature Biotechnology 34, 3 (01 Mar 2016), 328–333. https://doi.org/10.1038/nbt.3471
[36]
Eppie M Yiu and Andrew J Kornberg. 2015. Duchenne muscular dystrophy. Journal of Paediatrics and Child Health 51, 8 (2015), 759–764. https://doi.org/10.1111/jpc.12868 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/jpc.12868

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
SETN '22: Proceedings of the 12th Hellenic Conference on Artificial Intelligence
September 2022
450 pages
ISBN:9781450395977
DOI:10.1145/3549737
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 09 September 2022

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. CRISPR-Cas9
  2. DMD
  3. Elevation
  4. Off-targets

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

SETN 2022

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 77
    Total Downloads
  • Downloads (Last 12 months)23
  • Downloads (Last 6 weeks)2
Reflects downloads up to 26 Sep 2024

Other Metrics

Citations

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media