Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3543873.3584651acmconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
short-paper

Integrated Ranking for News Feed with Reinforcement Learning

Published: 30 April 2023 Publication History

Abstract

With the development of recommender systems, it becomes an increasingly common need to mix multiple item sequences from different sources. Therefore, the integrated ranking stage is proposed to be responsible for this task with re-ranking models. However, existing methods ignore the relation between the sequences, thus resulting in local optimum over the interaction session. To resolve this challenge, in this paper, we propose a new model named NFIRank (News Feed Integrated Ranking with reinforcement learning) and formulate the whole interaction session as a MDP (Markov Decision Process). Sufficient offline experiments are provided to verify the effectiveness of our model. In addition, we deployed our model on Huawei Browser and gained 1.58% improvements in CTR compared with the baseline in online A/B test. Code will be available at https://gitee.com/mindspore/models/tree/master/research/recommend/NFIRank.

References

[1]
Qingyao Ai, Keping Bi, Jiafeng Guo, and W Bruce Croft. 2018. Learning a deep listwise context model for ranking refinement. In The 41st international ACM SIGIR conference on research & development in information retrieval. 135–144.
[2]
Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. 2014. On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259 (2014).
[3]
Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002), 422–446.
[4]
Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
[5]
Guogang Liao, Ze Wang, Xiaoxu Wu, Xiaowen Shi, Chuheng Zhang, Yongkang Wang, Xingxing Wang, and Dong Wang. 2022. Cross dqn: Cross deep q network for ads allocation in feed. In Proceedings of the ACM Web Conference 2022. 401–409.
[6]
Weiwen Liu, Yunjia Xi, Jiarui Qin, Fei Sun, Bo Chen, Weinan Zhang, Rui Zhang, and Ruiming Tang. 2022. Neural Re-ranking in Multi-stage Recommender Systems: A Review. arXiv preprint arXiv:2202.06602 (2022).
[7]
Lori Lorigo, Maya Haridasan, Hrönn Brynjarsdóttir, Ling Xia, Thorsten Joachims, Geri Gay, Laura Granka, Fabio Pellacini, and Bing Pan. 2008. Eye tracking and online search: Lessons learned and challenges ahead. Journal of the American Society for Information Science and Technology 59, 7 (2008), 1041–1052.
[8]
Lori Lorigo, Bing Pan, Helene Hembrooke, Thorsten Joachims, Laura Granka, and Geri Gay. 2006. The influence of task and gender on search and evaluation behavior using Google. Information processing & management 42, 4 (2006), 1123–1131.
[9]
MindSpore. 2023. MindSpore. https://www.mindspore.cn/.
[10]
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, 2015. Human-level control through deep reinforcement learning. nature 518, 7540 (2015), 529–533.
[11]
Liang Pang, Jun Xu, Qingyao Ai, Yanyan Lan, Xueqi Cheng, and Jirong Wen. 2020. Setrank: Learning a permutation-invariant ranking model for information retrieval. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 499–508.
[12]
Changhua Pei, Yi Zhang, Yongfeng Zhang, Fei Sun, Xiao Lin, Hanxiao Sun, Jian Wu, Peng Jiang, Junfeng Ge, Wenwu Ou, 2019. Personalized re-ranking for recommendation. In Proceedings of the 13th ACM conference on recommender systems. 3–11.
[13]
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems 30 (2017).

Cited By

View all
  • (2024)Ad vs Organic: Revisiting Incentive Compatible Mechanism Design in E-commerce PlatformsProceedings of the ACM Web Conference 202410.1145/3589334.3645638(235-244)Online publication date: 13-May-2024

Index Terms

  1. Integrated Ranking for News Feed with Reinforcement Learning

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    WWW '23 Companion: Companion Proceedings of the ACM Web Conference 2023
    April 2023
    1567 pages
    ISBN:9781450394192
    DOI:10.1145/3543873
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 30 April 2023

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Recommender system
    2. integrated ranking
    3. reinforcement learning

    Qualifiers

    • Short-paper
    • Research
    • Refereed limited

    Conference

    WWW '23
    Sponsor:
    WWW '23: The ACM Web Conference 2023
    April 30 - May 4, 2023
    TX, Austin, USA

    Acceptance Rates

    Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)65
    • Downloads (Last 6 weeks)12
    Reflects downloads up to 24 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Ad vs Organic: Revisiting Incentive Compatible Mechanism Design in E-commerce PlatformsProceedings of the ACM Web Conference 202410.1145/3589334.3645638(235-244)Online publication date: 13-May-2024

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media