Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3429889.3429942acmotherconferencesArticle/Chapter ViewAbstractPublication PagesisaimsConference Proceedingsconference-collections
research-article

Immunotherapies For Cancer, a Promising Cure?

Published: 04 December 2020 Publication History

Abstract

Cancer is a common cause of death around the world. To date, surgery is still the only curative option for most types of cancer. Moreover, the majority of cancer is a prominent resistance to traditional therapies that we have long been using, including chemotherapy and radiotherapy. In recent years, different types of immune cells have been recognized as a critical component in therapies. Especially, the cancer-immunotherapy has come into the spotlight. In a number of clinical trials, it has shown capabilities of addressing the defects of transitional therapies, achieving complete eradication of neoplasms and constructing a long-lasting immunity to prevent recurrence. Currently, remarkable progress and innovations in methods and approaches are made. In this article, we first discuss the main types of immune cells participated in anti-tumor/cancer activities, immunotherapy and its applications in multiple fields. Next, we summarize the associations between the immune system and cancer, and current immunotherapies for cancer, including specific examples or experimental trials, with the advantages and disadvantages of each. Despite many unsolved questions regarding immunotherapy such as financial concerns, the current paper overall demonstrates that the development of immunotherapy is an emerging and potentially influential therapy for improving the survival rate and prognosis of cancer.

References

[1]
Piana, R. (2015). A Snapshot of Early Immunotherapy. Retrieved August 16, 2020, from https://ascopost.com/issues/october-25-2015/a-snapshot-of-early-immunotherapy/
[2]
What is Immunotherapy? (2016). Retrieved September 12, 2020, from https://www.cancerresearch.org/immunotherapy/what-is-immunotherapy
[3]
Janeway, C. A., Jr., Travers, P., Walport, M., & Shlomchik, M. J. (2001). Immunobiology, 5th edition: The Immune System in Health and Disease. New York City, New York: Garland Publishing.
[4]
Kondo, M., Weissman, I. L., & Akashi, K. (1997). Identification of Clonogenic Common Lymphoid Progenitors in Mouse Bone Marrow. Cell, 91(5), 661--672.
[5]
Paul, S., & Lal, G. (2017). The Molecular Mechanism of Natural Killer Cells Function and Its Importance in Cancer Immunotherapy. Frontiers in Immunology, 8.
[6]
Brandstadter, J. D., & Yang, Y. (2011). Natural Killer Cell Responses to Viral Infection. Journal of Innate Immunity, 3(3), 274--279.
[7]
Schoenborn, J. R., & Wilson, C. B. (2007). Regulation of Interferon-γ During Innate and Adaptive Immune Responses. Advances in Immunology, 41--101.
[8]
Wagtmann, N., Rajagopalan, S., Winter, C. C., Peruui, M., & Long, E. O. (1995). Killer cell inhibitory receptors specific for HLA-C and HLA-B identified by direct binding and by functional transfer. Immunity, 3(6), 801--809.
[9]
Mandelboim, O., Lieberman, N., Lev, M., Paul, L., Arnon, T. I., Bushkin, Y., ... Porgador, A. (2001). Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature, 409(6823), 1055--1060.
[10]
Jamieson, A., Diefenbach, A., Mcmahon, C., Xiong, N., Carlyle, J., & Raulet, D. (2004). The Role of the NKG2D Immunoreceptor in Immune Cell Activation and Natural Killing. Immunity, 20(6), 799.
[11]
Marcus, A., Gowen, B. G., Thompson, T. W., Iannello, A., Ardolino, M., Deng, W., ... Raulet, D. H. (2014). Recognition of Tumors by the Innate Immune System and Natural Killer Cells. Advances in Immunology, 91--128.
[12]
Geissmann, F., Manz, M. G., Jung, S., Sieweke, M. H., Merad, M., & Ley, K. (2010). Development of Monocytes, Macrophages, and Dendritic Cells. Science, 327(5966), 656--661.
[13]
Dalod, M., Chelbi, R., Malissen, B., & Lawrence, T. (2014). Dendritic cell maturation: Functional specialization through signaling specificity and transcriptional programming. The EMBO Journal, 33(10), 1104--1116.
[14]
Trombetta, E. S. (2003). Activation of Lysosomal Function During Dendritic Cell Maturation. Science, 299(5611), 1400--1403.
[15]
Colvin, B. L., Matta, B. M., & Thomson, A. W. (2008). Dendritic Cells and Chemokine-Directed Migration in Transplantation: Where Are We Headed? Clinics in Laboratory Medicine, 28(3), 375--384.
[16]
Tai, Y., Wang, Q., Korner, H., Zhang, L., & Wei, W. (2018). Molecular Mechanisms of T Cells Activation by Dendritic Cells in Autoimmune Diseases. Frontiers in Pharmacology, 9.
[17]
Krummel, M. F., & Allison, J. P. (1995). CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. The Journal of Experimental Medicine, 182(2), 459--465.
[18]
Epelman, S., Lavine, K., & Randolph, G. (2014). Origin and Functions of Tissue Macrophages. Immunity, 41(1), 21--35.
[19]
Viola, A., Munari, F., Sánchez-Rodríguez, R., Scolaro, T., & Castegna, A. (2019). The Metabolic Signature of Macrophage Responses. Frontiers in Immunology, 10.
[20]
Barker, R. N., Erwig, L., Hill, K. S., Devine, A., Pearce, W. P., & Rees, A. J. (2002). Antigen presentation by macrophages is enhanced by the uptake of necrotic, but not apoptotic, cells. Clinical & Experimental Immunology, 127(2), 220--225.
[21]
Zhang, X., & Mosser, D. (2008). Macrophage activation by endogenous danger signals. The Journal of Pathology, 214(2), 161--178.
[22]
Slauch, J. M. (2011). How does the oxidative burst of macrophages kill bacteria? Still an open question. Molecular Microbiology, 80(3), 580--583.
[23]
Underhill, D. M., Bassetti, M., Rudensky, A., & Aderem, A. (1999). Dynamic Interactions of Macrophages with T Cells during Antigen Presentation. The Journal of Experimental Medicine, 190(12), 1909--1914.
[24]
Fischer, C. D., Beatty, J. K., Duquette, S. C., Morck, D. W., Lucas, M. J., & Buret, A. G. (2013). Direct and Indirect Anti-Inflammatory Effects of Tulathromycin in Bovine Macrophages: Inhibition of CXCL-8 Secretion, Induction of Apoptosis, and Promotion of Efferocytosis. Antimicrobial Agents and Chemotherapy, 57(3), 1385--1393.
[25]
Ringehan, M., Mckeating, J. A., & Protzer, U. (2017). Viral hepatitis and liver cancer. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1732), 20160274.
[26]
Peng, H., & Tian, Z. (2017). Natural Killer Cell Memory: Progress and Implications. Frontiers in Immunology, 8.
[27]
Ratajczak, W., Niedźwiedzka-Rystwej, P., Tokarz-Deptuła, B., & Deptuła, W. (2018). Immunological memory cells. Central European Journal of Immunology, 43(2), 194--203.
[28]
Lai, A. Y., & Kondo, M. (2008). T and B lymphocyte differentiation from hematopoietic stem cell. Seminars in Immunology, 20(4), 207--212.
[29]
Zúñiga-Pflücker, J. C. (2004). T-cell development made simple. Nature Reviews Immunology, 4(1), 67--72.
[30]
Smeltz, R. B., Chen, J., Ehrhardt, R., & Shevach, E. M. (2002). Role of IFN-γ in Th1 Differentiation: IFN-γ Regulates IL-18Rα Expression by Preventing the Negative Effects of IL-4 and by Inducing/Maintaining IL-12 Receptor β2 Expression. The Journal of Immunology, 168(12), 6165--6172.
[31]
Hoffman, R. (2018). Hematology: Basic principles and practice. Philadelphia, Pennsylvania: Elsevier.
[32]
Chen, L., Grabowski, K. A., Xin, J., Coleman, J., Huang, Z., Espiritu, B., ... Huang, H. (2004). IL-4 Induces Differentiation and Expansion of Th2 Cytokine-Producing Eosinophils. The Journal of Immunology, 172(4), 2059--2066.
[33]
Bao, K., & Reinhardt, R. L. (2015). The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. Cytokine, 75(1), 25--37.
[34]
Walker, J. A., & Mckenzie, A. N. (2017). TH2 cell development and function. Nature Reviews Immunology, 18(2), 121--133.
[35]
Qin, H., Wang, L., Feng, T., Elson, C. O., Niyongere, S. A., Lee, S. J., ... Cong, Y. (2009). TGF-β Promotes Th17 Cell Development through Inhibition of SOCS3. The Journal of Immunology, 183(1), 97--105.
[36]
Khader, S. A., & Gopal, R. (2010). IL-17 in protective immunity to intracellular pathogens. Virulence, 1(5), 423--427.
[37]
Zhang, N., & Bevan, M. (2011). CD8+ T Cells: Foot Soldiers of the Immune System. Immunity, 35(2), 161--168.
[38]
Bachmann, M. F., & Oxenius, A. (2007). Interleukin 2: From immunostimulation to immunoregulation and back again. EMBO Reports, 8(12), 1142--1148.
[39]
Rudensky, A. Y. (2011). Regulatory T cells and Foxp3. Immunological Reviews, 241(1), 260--268.
[40]
Corthay, A. (2009). How do Regulatory T Cells Work? Scandinavian Journal of Immunology, 70(4), 326--336.
[41]
Plitas, G., & Rudensky, A. Y. (2016). Regulatory T Cells: Differentiation and Function. Cancer Immunology Research, 4(9), 721--725.
[42]
Chen, X., & Jensen, P. E. (2008). The role of B lymphocytes as antigen-presenting cells. Archivum Immunologiae Et Therapiae Experimentalis, 56(2), 77--83.
[43]
Horikawa, K., & Takatsu, K. (2006). Interleukin-5 regulates genes involved in B-cell terminal maturation. Immunology, 0(0).
[44]
Wabl, M., & Steinberg, C. (1996). Affinity maturation and class switching. Current Opinion in Immunology, 8(1), 89--92.
[45]
Cancer. (n.d.). Retrieved September 13, 2020, from https://www.who.int/news-room/fact-sheets/detail/cancer
[46]
Fridman, J. S., & Lowe, S. W. (2003). Control of apoptosis by p53. Oncogene, 22(56), 9030--9040.
[47]
Giacinti, C., & Giordano, A. (2006). RB and cell cycle progression. Oncogene, 25(38), 5220--5227.
[48]
Gonzalez, H., Hagerling, C., & Werb, Z. (2018). Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes & Development, 32(19-20), 1267--1284.
[49]
Schreiber, R. D., Old, L. J., & Smyth, M. J. (2011). Cancer Immunoediting: Integrating Immunity's Roles in Cancer Suppression and Promotion. Science, 331(6024), 1565--1570.
[50]
Messerschmidt, J. L., Prendergast, G. C., & Messerschmidt, G. L. (2016). How Cancers Escape Immune Destruction and Mechanisms of Action for the New Significantly Active Immune Therapies: Helping Nonimmunologists Decipher Recent Advances. The Oncologist, 21(2), 233--243.
[51]
Liu, B., Ezeogu, L., Zellmer, L., Yu, B., Xu, N., & Liao, D. J. (2015). Protecting the normal in order to better kill the cancer. Cancer Medicine, 4(9), 1394--1403.
[52]
Wu, J., & Waxman, D. J. (2018). Immunogenic chemotherapy: Dose and schedule dependence and combination with immunotherapy. Cancer Letters, 419, 210--221.
[53]
Wraith, D. C. (2017). The Future of Immunotherapy: A 20-Year Perspective. Frontiers in Immunology, 8.
[54]
Clem, A. (2011). Fundamentals of vaccine immunology. Journal of Global Infectious Diseases, 3(1), 73.
[55]
Ton, A. M., Kox, M., Abdo, W. F., & Pickkers, P. (2018). Precision Immunotherapy for Sepsis. Frontiers in Immunology, 9.
[56]
Kudo, M., Ishigatsubo, Y., & Aoki, I. (2013). Pathology of asthma. Frontiers in Microbiology, 4(263).
[57]
Lin, S. Y., Azar, A., Suarez-Cuervo, C., Diette, G. B., Brigham, E., Rice, J., ... Robinson, K. A. (2017). The Role of Immunotherapy in the Treatment of Asthma.
[58]
Peakman, M., & Dayan, C. M. (2001). Antigen-specific immunotherapy for autoimmune disease: Fighting fire with fire? Immunology, 104(4), 361--366.
[59]
Feldmann, M., & Steinman, L. (2005). Design of effective immunotherapy for human autoimmunity. Nature, 435(7042), 612--619.
[60]
Goel, G., & Sun, W. (2014). Cancer immunotherapy in clinical practice---the past, present, and future. Chinese Journal of Cancer, 33(9), 445--457.
[61]
Hoption Cann, S. A., van Netten, J. P., & van Netten, C. (2003). Dr William Coley and tumour regression: a place in history or in the future. Postgraduate medical journal, 79(938), 672--680.
[62]
Hurst, J. H. (2015). Cancer immunotherapy innovator James Allison receives the 2015 Lasker~DeBakey Clinical Medical Research Award. Journal of Clinical Investigation, 125(10), 3732--3736.
[63]
Rafei, H., El-Bahesh, E., Finianos, A., Nassereddine, S., & Tabbara, I. (2017). Immune-based Therapies for Non-small Cell Lung Cancer. Anticancer Research, 37(2), 377--388.
[64]
Baxter, D. (2014). Active and passive immunization for cancer. Human Vaccines & Immunotherapeutics, 10(7), 2123--2129.
[65]
Mcshane, H. (2011). Tuberculosis vaccines: Beyond bacille Calmette-Guérin. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1579), 2782--2789.
[66]
Sylvester, R. J., Meijden, A. P., & Lamm, D. L. (2002). Intravesical Bacillus Calmette-Guerin Reduces the Risk of Progression in Patients with Superficial Bladder Cancer: A Meta-analysis of the Published Results of Randomized Clinical Trials. Journal of Urology, 168(5), 1964--1970.
[67]
Ratliff, T. L., Kavoussi, L. R., & Catalona, W. J. (1988). Role of Fibronectin in Intravesical BCG Therapy for Superficial Bladder Cancer. Journal of Urology, 139(2), 410--414.
[68]
Green, J., Fuge, O., Allchorne, P., & Vasdev, N. (2015). Immunotherapy for bladder cancer. Research and Reports in Urology, 65.
[69]
Guallar-Garrido, S., & Julián, E. (2020). Bacillus Calmette-Guérin (BCG) Therapy for Bladder Cancer: An Update. ImmunoTargets and Therapy, Volume 9, 1--11.
[70]
Anassi, E., & Ndefo, U. A. (2011). Sipuleucel-T (provenge) injection: the first immunotherapy agent (vaccine) for hormone-refractory prostate cancer. P & T: a peer-reviewed journal for formulary management, 36(4), 197--202.
[71]
Small, E. J., Schellhammer, P. F., Higano, C. S., Redfern, C. H., Nemunaitis, J. J., Valone, F. H., ... Hershberg, R. M. (2006). Placebo-Controlled Phase III Trial of Immunologic Therapy with Sipuleucel-T (APC8015) in Patients with Metastatic, Asymptomatic Hormone Refractory Prostate Cancer. Journal of Clinical Oncology, 24(19), 3089--3094.
[72]
Kong, H. Y., & Byun, J. (2013). Emerging Roles of Human Prostatic Acid Phosphatase. Biomolecules and Therapeutics, 21(1), 10--20.
[73]
Greter, M., Helft, J., Chow, A., Hashimoto, D., Mortha, A., Agudo-Cantero, J., ... Merad, M. (2012). GM-CSF Controls Nonlymphoid Tissue Dendritic Cell Homeostasis but Is Dispensable for the Differentiation of Inflammatory Dendritic Cells. Immunity, 36(6), 1031--1046.
[74]
Bhattacharya, P., Thiruppathi, M., Elshabrawy, H. A., Alharshawi, K., Kumar, P., & Prabhakar, B. S. (2015). GM-CSF: An immune modulatory cytokine that can suppress autoimmunity. Cytokine, 75(2), 261--271.
[75]
Terunuma, H., Deng, X., Nishino, N., & Watanabe, K. (2013). NK cell-based autologous immune enhancement therapy (AIET) for cancer. Journal of stem cells & regenerative medicine, 9(1), 9--13.
[76]
Nigro, C. L., Macagno, M., Sangiolo, D., Bertolaccini, L., Aglietta, M., & Merlano, M. C. (2019). NK-mediated antibody-dependent cell-mediated cytotoxicity in solid tumors: Biological evidence and clinical perspectives. Annals of Translational Medicine, 7(5), 105--105.
[77]
Ratnavelu, K., Subramani, B., Pullai, C. R., Krishnan, K., Sugadan, S. D., Rao, M. S., ... Hiroshi, T. (2013). Autologous immune enhancement therapy against an advanced epithelioid sarcoma: A case report. Oncology Letters, 5(5), 1457--1460.
[78]
Coca, S., Perez-Piqueras, J., Martinez, D., Colmenarejo, A., Saez, M. A., Vallejo, C., ... Moreno, M. (1997). The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer, 79(12), 2320--2328.
[79]
Agha-Mohammadi, S., & Lotze, M. T. (2000). Immunomodulation of cancer: Potential use of selectively replicating agents. Journal of Clinical Investigation, 105(9), 1173--1176.
[80]
Lee, S., & Margolin, K. (2011). Cytokines in Cancer Immunotherapy. Cancers, 3(4), 3856--3893.
[81]
Voss, S., Hank, J., Nobis, C., Fisch, P., Sosman, J., & Sondel, P. (1989). Serum levels of the low-affinity interleukin-2 receptor molecule (TAC) during IL-2 therapy reflect systemic lymphoid mass activation. Cancer Immunology Immunotherapy, 29(4).
[82]
Davar, D., Ding, F., Saul, M., Sander, C., Tarhini, A. A., Kirkwood, J. M., & Tawbi, H. A. (2017). High-dose interleukin-2 (HD IL-2) for advanced melanoma: A single center experience from the University of Pittsburgh Cancer Institute. Journal for ImmunoTherapy of Cancer, 5(1).
[83]
Rosenberg, S. A. (2007). Interleukin 2 for patients with renal cancer. Nature Clinical Practice Oncology, 4(9), 497--497.
[84]
Lee, A. J., & Ashkar, A. A. (2018). The Dual Nature of Type I and Type II Interferons. Frontiers in Immunology, 9.
[85]
Tarhini, A. A., Zahoor, H., Lin, Y., Malhotra, U., Sander, C., Butterfield, L. H., & Kirkwood, J. M. (2015). Baseline circulating IL-17 predicts toxicity while TGF-β1 and IL-10 are prognostic of relapse in ipilimumab neoadjuvant therapy of melanoma. Journal for ImmunoTherapy of Cancer, 3(1).
[86]
Kirkwood, J. M. (1985). Comparison of Intramuscular and Intravenous Recombinant Alpha-2 Interferon in Melanoma and Other Cancers. Annals of Internal Medicine, 103(1), 32.
[87]
Jones, T. H., Wadler, S., & Hupart, K. H. (1998). Endocrine-mediated mechanisms of fatigue during treatment with interferon-alpha. Seminars in oncology, 25(1 Suppl 1), 54--63.
[88]
Cao, L., Kulmburg, P., Veelken, H., Mackensen, A., Mézes, B., Lindemann, A., ... Rosenthal, F. M. (2009). Cytokine gene transfer in cancer therapy. Stem Cells, 16(S2), 251--260.
[89]
Agha-Mohammadi, S., & Lotze, M. T. (2000). Immunomodulation of cancer: Potential use of selectively replicating agents. Journal of Clinical Investigation, 105(9), 1173--1176.
[90]
Hurford, R. K., Dranoff, G., Mulligan, R. C., & Tepper, R. I. (1995). Gene therapy of metastatic cancer by in vivo retroviral gene targeting. Nature Genetics, 10(4), 430--435.
[91]
Addison, C. L., Braciak, T., Ralston, R., Muller, W. J., Gauldie, J., & Graham, F. L.(1995). Intratumoral injection of an adenovirus expressing interleukin 2 induces regression and immunity in a murine breast cancer model. Proceedings of the National Academy of Sciences, 92(18), 8522--8526.
[92]
Pardoll, D. M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews Cancer, 12(4), 252--264.
[93]
Akinleye, A., & Rasool, Z. (2019). Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. Journal of Hematology & Oncology, 12(1).
[94]
Vaddepally, R. K., Kharel, P., Pandey, R., Garje, R., & Chandra, A. B. (2020). Review of Indications of FDA-Approved Immune Checkpoint Inhibitors per NCCN Guidelines with the Level of Evidence. Cancers, 12(3), 738.
[95]
Zou, W., & Chen, L. (2008). Inhibitory B7-family molecules in the tumour microenvironment. Nature Reviews Immunology, 8(6), 467--477.
[96]
Brunner-Weinzierl, M. C., & Rudd, C. E. (2018). CTLA-4 and PD-1 Control of T-Cell Motility and Migration: Implications for Tumor Immunotherapy. Frontiers in Immunology, 9.
[97]
Buchbinder, E. I., & Desai, A. (2016). CTLA-4 and PD-1 Pathways. American Journal of Clinical Oncology, 39(1), 98--106.
[98]
Fellner C. (2012). Ipilimumab (yervoy) prolongs survival in advanced melanoma: serious side effects and a hefty price tag may limit its use. P & T: a peer-reviewed journal for formulary management, 37(9), 503--530.
[99]
Wolchok, J. D., Hodi, F. S., Weber, J. S., Allison, J. P., Urba, W. J., Robert, C., ... Korman, A. J. (2013). Development of ipilimumab: A novel immunotherapeutic approach for the treatment of advanced melanoma. Annals of the New York Academy of Sciences, 1291(1), 1--13.
[100]
Ribas, A., Hamid, O., Daud, A., Hodi, F. S., Wolchok, J. D., Kefford, R., ... Robert, C. (2016). Association of Pembrolizumab With Tumor Response and Survival Among Patients With Advanced Melanoma. Jama, 315(15), 1600.
[101]
Lim, S. H., Sun, J., Lee, S., Ahn, J. S., Park, K., & Ahn, M. (2016). Pembrolizumab for the treatment of non-small cell lung cancer. Expert Opinion on Biological Therapy, 16(3), 397--406.
[102]
Lugowska, I., Teterycz, P., & Rutkowski, P. (2018). Immunotherapy of melanoma. Współczesna Onkologia, 2018(1), 61--67.
[103]
Carbone, D. P., Reck, M., Paz-Ares, L., Creelan, B., Horn, L., Steins, M., ... Socinski, M. A. (2017). First-Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer. New England Journal of Medicine, 376(25), 2415--2426.
[104]
Mazza, C., Escudier, B., & Albiges, L. (2016). Nivolumab in renal cell carcinoma: Latest evidence and clinical potential. Therapeutic Advances in Medical Oncology, 9(3), 171--181.
[105]
Cemiplimab Approved for Treatment of CSCC. (2018). Cancer discovery, 8(12), OF2. https://doi.org/10.1158/2159-8290.CD-NB2018-140
[106]
Yang, S., Zhang, Z., & Wang, Q. (2019). Emerging therapies for small cell lung cancer. Journal of Hematology & Oncology, 12(1).
[107]
Crist, M., & Balar, A. (2017). Atezolizumab in invasive and metastatic urothelial carcinoma. Expert Review of Clinical Pharmacology, 10(12), 1295--1301.
[108]
D'Angelo, S. P., Russell, J., Lebbe, C., Chmielowski, B., Gambichler, T., Grob, J., ... Kaufman, H. L. (2018). Efficacy and Safety of First-line Avelumab Treatment in Patients With Stage IV Metastatic Merkel Cell Carcinoma. JAMA Oncology, 4(9).
[109]
Gulley, J. L., Rajan, A., Spigel, D. R., Iannotti, N., Chandler, J., Wong, D. J., ... Kelly, K. (2017). Avelumab for patients with previously treated metastatic or recurrent non-small-cell lung cancer (JAVELIN Solid Tumor): Dose-expansion cohort of a multicentre, open-label, phase 1b trial. The Lancet Oncology, 18(5), 599--610.
[110]
Uemura, T., & Hida, T. (2018). Durvalumab showed long and durable effects after chemoradiotherapy in stage III non-small cell lung cancer: Results of the PACIFIC study. Journal of Thoracic Disease, 10(S9).
[111]
Powles, T., O'donnell, P. H., Massard, C., Arkenau, H., Friedlander, T. W., Hoimes, C. J., ... Hahn, N. M. (2017). Efficacy and Safety of Durvalumab in Locally Advanced or Metastatic Urothelial Carcinoma. JAMA Oncology, 3(9).

Index Terms

  1. Immunotherapies For Cancer, a Promising Cure?

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ISAIMS '20: Proceedings of the 1st International Symposium on Artificial Intelligence in Medical Sciences
    September 2020
    313 pages
    ISBN:9781450388603
    DOI:10.1145/3429889
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 04 December 2020

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Cancer
    2. Immune cells
    3. Immuno-oncology
    4. Immunotherapies

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    ISAIMS 2020

    Acceptance Rates

    ISAIMS '20 Paper Acceptance Rate 53 of 112 submissions, 47%;
    Overall Acceptance Rate 53 of 112 submissions, 47%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 25
      Total Downloads
    • Downloads (Last 12 months)3
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 15 Feb 2025

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media