Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3429309.3429314acmotherconferencesArticle/Chapter ViewAbstractPublication PagesclimateinformaticsConference Proceedingsconference-collections
research-article

Retrieving Rain rates from space borne microwave sensors using U-nets.

Published: 11 January 2021 Publication History

Abstract

Despite a lot of progress over the last decades, rain retrieval from spaceborne measurement has been a challenge since the first launch of a passive microwave radiometers on one of the NOAA Defense Meteorological satellites in the 70s. Deep-learning and convolutional U-Nets might be able to offer a breakthrough on the topic because they do take into account the topology of both the rain field and the measured brightness temperatures. The present paper offers the very first results on the application of such artificial neural networks on the rain retrieval problem.

References

[1]
C. Kummerow, W. Barnes, T. Kozu, J. Shiue, J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) Sensor Package.  J. of Atmos. and Ocean. Technol. Vol. 15, no. 3, pp. 809–817.
[2]
E. A. Smith, G. Asrar, Y. Furuhama, A. Ginati, C. Kummerow, V. Levizzani, A. Mugnai, K. Nakamura, R. Adler, V. Casse, M. Cleave, M. Debois, and J. Durning, 2007:  International Global Precipitation Measurement (GPM) Program and Mission: An Overview.  Springer - Measuring Precipitation from Space - EURAINSAT and the future.  Vol.28, pp. 611-653.
[3]
N. Viltard, C. Burlaud and C. D. Kummerow, 2006: Rain retrieval from TMI brightness temperature measurements using a TRMM PR–based database.  J. Appl. Meteor. Climatol., 45, 455–466
[4]
C. D. Kummerow, D.L. Randel, M. Kulie, N. Wang, R. Ferraro, S. Joseph Munchak, and V. Petkovic, 2015: The Evolution of the Goddard Profiling Algorithm to a Fully Parametric Scheme. J. Atmos. Oceanic Technol., 32, 2265–2280
[5]
E. Moreau, Mallet C., Thiria S., Mabboux X., Badran F., Klapisz C., 2002: Atmospheric Liquid Water Retrieval Using a Gated Expert Neural Network, J. of Atmos. and Ocean. Tech., 19, 457-466
[6]
Y. Hong, K. Hsu, S. Sorooshian and X. Gao, 2004: Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System. J. of Appl. Meteor., 43, 1834-1853
[7]
C. Surussavadee and D. H. Staelin, 2208: Global Millimeter-Wave Precipitation Retrievals Trained With a Cloud-Resolving Numerical Weather Prediction Model, Part I: Retrieval Design.   IEEE Transactions on Geosci. and R. Sens., 46, 99-108
[8]
C. Mahesh, S. Prakash, V. Sathiyamoorthy, R.M. Gairola, 2011: Artificial neural network-based microwave precipitation estimation using scattering index and polarization corrected temperature. Atmos. Res., 102, 358-364
[9]
P. Sanò G. Panegrossi, D. Casella, A.C. Marra, L.P. D'Adderio, J.F. Rysman and S. Dietrich, 2018: The Passive Microwave Neural Network Precipitation Retrieval (PNPR) Algorithm for the CONICAL Scanning Global Microwave Imager (GMI) Radiometer.  Remote Sens. 10, 1122
[10]
Y. Tao, X. Gao, A. Ihler, K. Hsu and S. Sorooshian, 2016: Deep neural networks for precipitation estimation from remotely sensed information. 2016 IEEE Congress on Evol. Comp. (CEC), Vancouver, BC, 1349-1355
[11]
Y. Tao, X. Gao, A. Ihler, S. Sorooshian and K. Hsu, 2017: Precipitation identification with bispectral satellite information using deep learning approaches.  J. of Hydrometeor., 18, 1271-1283.
[12]
N. B. Adhikar., T. Iguchi, S. Shinta, 2007:  Rain retrieval performance of a dual-frequency precipitation radar technique with differential-attenuation constraint.  IEEE Trans. Geo. and Rem. Sens., Vol.45, pp. 2612-2618.
[13]
O. Ronneberger, P. Fischer,and T. Brox, 2015: U-net: Convolutional networks for biomedical image segmentation. Int. Conf. on Med. Image Comput. and Computer-Assisted Interv. Springer, pp. 234–241.
[14]
P. Le Petit, L. Barthès, C. Mallet, C. Ly, N. Viltard, Y. Lemaître, 2020: Using Deep Leaning for Restoration of Precipitation Echoes in Radar Data, IEEE Transac. Gesosci. And R. Sensing. Conditionally accepted.
[15]
X. Glorot and Y. Bengio, 2010: Understanding the difficulty of training deep feedforward neural networks. Proc. 13 th Int. Conf. on Artificial Intelligence and Statistics, pp 249-256
[16]
P. D. Kingma and J. Ba, 2014: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
CI2020: Proceedings of the 10th International Conference on Climate Informatics
September 2020
138 pages
ISBN:9781450388481
DOI:10.1145/3429309
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 January 2021

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Active and passive Microwave
  2. Rain retrieval
  3. U-net

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

CI2020
CI2020: 10th International Conference on Climate Informatics
September 22 - 25, 2020
virtual, United Kingdom

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 39
    Total Downloads
  • Downloads (Last 12 months)5
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media