Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3423390.3423399acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicacsConference Proceedingsconference-collections
research-article

Ranking Fuzzy Numbers by Similarity Measure Index

Published: 25 November 2020 Publication History

Abstract

Uncertainties included in soft classification exist in classical mathematics. However, in daily life, the extended fuzzy concept has much information and due to the large applications of fuzzy numbers, the ranking of numbers plays a very important role in linguistic decision-making and some other fuzzy application systems. Moreover, several strategies have been proposed for ranking of fuzzy numbers. However, due to the complexity of the problem, a method gives a satisfactory result to all situations is a challenging task. Most of them contained some shortcoming, such as requirement of complicated calculations, inconsistency with human intuition and indiscrimination and some produce different rankings for the same situation and some method cannot rank crisp numbers. In 2011, Hajjari [1, 2] proposed an approach for similarity measure for a triangular fuzzy numbers (TFNs), which computed the distance between two fuzzy numbers and used centroid point namely "Index". In previous method, the rejected centroid point is used. However, this method has two main weaknesses including rejected formula and similarity measure for only TFNs. For overcoming the above issues, a new similarity measure index to calculate the degree of similarity of generalized trapezoidal fuzzy numbers (TrFNs) is proposed. The proposed approach is developed by integrating the concept of center of gravity points and distance of fuzzy numbers. The proposed method gives a better and more robust similarity measure and it is more efficient than previous one and other methods in the literature as well. The method is illustrated by some numerical examples and in particular, the results of ranking by the given method and some common and existing methods for ranking is compared to confirm the advantages of presented approach.

References

[1]
Hajjari, T. 2015, Fuzzy Risk Analysis Based on Ranking of Fuzzy numbers via new magnitude method, Iranian Journal of Fuzzy Systems 12, 3 (Jun 2015), 17--29. DOI=10.22111/IJFS.2015.2017.
[2]
Hajjari, T. 2011. Ranking of fuzzy numbers based on ambiguity degree", Australian Journal of Basic and Applied Sciences., 5, 1 (January 2011), 62--69.
[3]
Zadeh, L.A. 1965. Fuzzy sets, information, and control, 8 (1965), 338--356.
[4]
Dubios, D. and Prade, H. 1978. Operations on fuzzy numbers", Internat. J. System Sci., 9, 6 (1987), 613--626.
[5]
Kauffman, A. and Gupta, M.M. 1985. Introduction to fuzzy arithmetic: Theory and Application", Van Nostrand Reinhold, New York, (Jan. 1985).
[6]
Karwowski, W. and Evans, G.W. 1986, Fuzzy concepts in production management research: a review", International Journal of Production Research, 24, 1 (1986), 129--147.
[7]
Chen, S.J. and Chen, S.M. 2003. A new method for handling multicriteria fuzzy decision-making problems using FN-IOWA operators, Cybernetic and Systems, 34, 2 (2003), 109--137. DOI=10.1080/01969720302866
[8]
Cheng, C.H. 1998. A new approach for ranking fuzzy numbers by distance method", Fuzzy Sets Syst. 95, 3 (May 1998), 307--317.
[9]
Chutia, R. and Gogoi, M. K. 2018. Fuzzy risk analysis in poultry farming using a new similarity measure on generalized fuzzy numbers, Computers and Industrial Engineering, 115 (January 2018), 543--558.
[10]
Deng, Y. Zhu, Z.F. and Liu, Q. 2006. Ranking fuzzy numbers with an area method using of gyration, Comput. Math. Appl., 51, 6-7 (March 2006) 1127-1136
[11]
Deng, Y. Zhu, Z.F. and Liu, Q. 2005. A topsis-based centroid index ranking method of fuzzy numbers and its application in decision-making", Cybernetic and Systems, 36, 6 (Aug. 2005) 581-595.
[12]
Jiang, T. and Li, Y. 1996. Generalized defuzzification strategies and their parameter learning procedure", IEEE Transactions on fuzzy systems, 4, 1 (Feb. 1996), 64--71.
[13]
Yager, R.R. 1996. Knowledge-based defuzzification Fuzzy Sets and Syst., 80, 2 (Jun 1996), 177--185.
[14]
Chen, S.J. and Chen, S.M. 2007. Fuzzy risk analysis based on the ranking of generalized trapezoidal fuzzy numbers", Applied intelligence, 26, 1 (Feb. 2007), 1--11. DOI=https://doi.org/10.1007/s10489-006-0003-5
[15]
Wu, A., Li, H. and Wang F. 2020. An improved similarity measure of generalized trapezoidal fuzzy numbers and its application in multi-attribute group decision making, Iranian Journal of Fuzzy Systems, In Press. DOI=10.22111/IJFS.2020.5390.
[16]
Xie, J., Zeng, W., Li, J. and Yin, Q. 2017. Similarity measures of generalized trapezoidal fuzzy numbers for fault diagnosis, Soft Computing, 23, 6 (Nov. 2017), 1999--2014.
[17]
Xu, Z., Shang, S., Qian, W. and Shu, W. 2010. A method for fuzzy risk analysis based on the new similarity of trapezoidal fuzzy numbers, Expert Systems with Applications, 37, 3 (March 2010), 1920--1927.
[18]
Abbasbandy, S. and Hajjari, T. 2009. A new approach for ranking of trapezoidal fuzzy numbers, Comput. Math. Appl., 57 (2009), 413--419. DOI=http://dx.doi.org/10.1016/j.camwa.2008.10.090
[19]
Abbasbandy, S. and Hajjari, T. 2010. An improvement on centroid point method for ranking of fuzzy numbers", J. Sci. I.A.U., 78 (2010), 109--119.
[20]
Chen, S.M., Munif, A., Chen, G.S. Liu, H.C. and Kuo, B.C. 2012. Fuzzy risk analysis based on ranking generalized fuzzy numbers with different left heights and right heights, Expert Syst. Appl., 39, 7 (2012), 6320--6334.
[21]
Chutia, R. and Chutia, B. 2017. A new method of ranking parametric form of fuzzy numbers using value and ambiguity Applied Soft Computing, 52 (March 2017), 1154--1168.
[22]
Darehmiraki, M. 2019. A novel parametric ranking method for intutionistic fuzzy numbers, Iranian Journal of Fuzzy Systems, 16, 1 (January 2019) 129-143.
[23]
Das, S. and Guha, D. A centroid-based ranking method of trapezoidal intuitionistic fuzzy numbers and its application to MCDM problems, F 2016. Fuzzy Information and Engineering, 8, 1 (March 2016), 41--74.
[24]
Fei, L., Wang, H., Chen, L. and Deng, Y. 2019. A new vector valued similarity measure for intuitionistic fuzzy sets based on OWA operators, Iranian Journal of Fuzzy System, 16, 3 (2019), 113--126.
[25]
Jiang, W. 2015. An improved method to rank generalized fuzzy numbers with different left heights and right heights, Journal of Intelligent & Fuzzy Systems 28, 5 (Jun 2015), 2343--2355.
[26]
Khorshidi, H. A. Nikfalazar, S. 2017. An improved similarity measure for generalized fuzzy numbers and its application to fuzzy risk analysis, Applied Soft Computing, 52, (March 2017), 478--486.
[27]
Leekwijck, W.V. and Kerre, E.E 2001, Continuity focused choice of maxima: Yet another defuzzification method", Fuzzy Sets and Syst., 122, 2 (Sep. 2001), 303--314.
[28]
Li, J. and Zeng, W. 2017. Fuzzy risk analysis based on the similarity measure of generalized trapezoidal fuzzy numbers, Journal of Intelligent and Fuzzy Systems, 32, 3 (2017), 1673--1683.
[29]
Liu, P. Cheng, S. and Zhang, Y. 2019, An extended multi-criteria group decision-making PROMETHEE method based on probability multi-valued neutrosophic sets, International Journal of Fuzzy Systems, 21(Oct. 2019), 388--406.
[30]
Prakash, K. A., Suresh, M. and Vengataasalam, S. 2016. A new approach for ranking of intuitionistic fuzzy numbers using a centroid concept, Mathematical Sciences, 10, 4 (Sep. 2016), 177--184.
[31]
Wang, Z.X., Liu, Y.J., Fan, Z.P. and Feng, B. 2009. Ranking L-R fuzzy numbers based on deviation degree", Inform. Sci., 179, 13 (Jun 2009), 2070--2077.
[32]
Zuo, X., Wang, L. and. Yue, Y. 2013. A new similarity measure of generalized trapezoidal fuzzy numbers and its application on rotor fault diagnosis, Mathematical Problems in Engineering, (March 2013), 1--10.
[33]
Wang, Y.J. and Lee, H.S H. 2008. The revised method of ranking fuzzy numbers with an area between the centroid and original points", Comput. Math. Appl., 55, 9 (Jan. 2008) 2033-2042.
[34]
Wang, X. and Kerre, 2001. Reasonable properties for the ordering of fuzzy quantities (I), Fuzzy Sets and Syst., 118 (March 2001) 375-385.
[35]
Chen, S.M. and Chen, J.H. 2009. Fuzzy risk analysis based on the ranking of generalized fuzzy numbers with different heights and different spreads, Expert Systems with Applications. 36, (Apr. 2009), 6833--6842.
[36]
Chen, S. M. and Sanguansat, K. 2011. Analyzing fuzzy risk based on a new fuzzy ranking method between generalized fuzzy numbers, Expert Syst. Appl., 38, 3 (March 2011), 2163 - 2171.
[37]
Wu, D., Liu, X., Xue, F., Zheng, H., Shou, Y., Jiang, W. 2018. Fuzzy risk analyses based on a new method for ranking generalized fuzzy numbers, Iranian Journal of Fuzzy Systems, 15, 3 (Jun 2018), 117--139.

Cited By

View all
  • (2023)A new ranking principle for ordering generalized trapezoidal fuzzy numbers based on diagonal distance, mean and its applications to supplier selectionSoft Computing10.1007/s00500-023-08749-xOnline publication date: 26-Jun-2023

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
ICACS '20: Proceedings of the 4th International Conference on Algorithms, Computing and Systems
January 2020
109 pages
ISBN:9781450377324
DOI:10.1145/3423390
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

In-Cooperation

  • University of Thessaly: University of Thessaly, Volos, Greece

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 25 November 2020

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Fuzzy risk analysis
  2. General fuzzy numbers
  3. Ranking
  4. Similarity measure

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

ICACS'20

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)5
  • Downloads (Last 6 weeks)0
Reflects downloads up to 26 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2023)A new ranking principle for ordering generalized trapezoidal fuzzy numbers based on diagonal distance, mean and its applications to supplier selectionSoft Computing10.1007/s00500-023-08749-xOnline publication date: 26-Jun-2023

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media