Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article
Open access

Return of CFA: call-site sensitivity can be superior to object sensitivity even for object-oriented programs

Published: 12 January 2022 Publication History

Abstract

In this paper, we challenge the commonly-accepted wisdom in static analysis that object sensitivity is superior to call-site sensitivity for object-oriented programs. In static analysis of object-oriented programs, object sensitivity has been established as the dominant flavor of context sensitivity thanks to its outstanding precision. On the other hand, call-site sensitivity has been regarded as unsuitable and its use in practice has been constantly discouraged for object-oriented programs. In this paper, however, we claim that call-site sensitivity is generally a superior context abstraction because it is practically possible to transform object sensitivity into more precise call-site sensitivity. Our key insight is that the previously known superiority of object sensitivity holds only in the traditional k-limited setting, where the analysis is enforced to keep the most recent k context elements. However, it no longer holds in a recently-proposed, more general setting with context tunneling. With context tunneling, where the analysis is free to choose an arbitrary k-length subsequence of context strings, we show that call-site sensitivity can simulate object sensitivity almost completely, but not vice versa. To support the claim, we present a technique, called Obj2CFA, for transforming arbitrary context-tunneled object sensitivity into more precise, context-tunneled call-site-sensitivity. We implemented Obj2CFA in Doop and used it to derive a new call-site-sensitive analysis from a state-of-the-art object-sensitive pointer analysis. Experimental results confirm that the resulting call-site sensitivity outperforms object sensitivity in precision and scalability for real-world Java programs. Remarkably, our results show that even 1-call-site sensitivity can be more precise than the conventional 3-object-sensitive analysis.

Supplementary Material

Auxiliary Presentation Video (popl22main-p586-p-video.mp4)
This is a teaser video of my talk at POPL 2022 on our paper "Return of CFA: Call-Site Sensitivity Can Be Superior to Object Sensitivity Even for Object-Oriented Programs" accepted in the research track. In this paper, we challenge the commonly-accepted wisdom in static analysis that object sensitivity is superior to call-site sensitivity for object-oriented programs.

References

[1]
Pavol Bielik, Veselin Raychev, and Martin Vechev. 2017. Learning a Static Analyzer from Data. In Computer Aided Verification, Rupak Majumdar and Viktor Kunčak (Eds.). Springer International Publishing, Cham. 233–253. isbn:978-3-319-63387-9
[2]
Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmarking Development and Analysis. In Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-oriented Programming Systems, Languages, and Applications (OOPSLA ’06). ACM, New York, NY, USA. 169–190. isbn:1-59593-348-4 https://doi.org/10.1145/1167473.1167488
[3]
Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Specification of Sophisticated Points-to Analyses. In Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented Programming Systems Languages and Applications (OOPSLA ’09). ACM, New York, NY, USA. 243–262. isbn:978-1-60558-766-0 https://doi.org/10.1145/1640089.1640108
[4]
Andrei Marian Dan, Manu Sridharan, Satish Chandra, Jean-Baptiste Jeannin, and Martin Vechev. 2017. Finding Fix Locations for CFL-Reachability Analyses via Minimum Cuts. In Computer Aided Verification, Rupak Majumdar and Viktor Kunčak (Eds.). Springer International Publishing, Cham. 521–541. isbn:978-3-319-63390-9
[5]
Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. 2014. Apposcopy: Semantics-based Detection of Android Malware Through Static Analysis. In Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE 2014). ACM, New York, NY, USA. 576–587. isbn:978-1-4503-3056-5 https://doi.org/10.1145/2635868.2635869
[6]
Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay. 2008. Effective Typestate Verification in the Presence of Aliasing. ACM Trans. Softw. Eng. Methodol., 17, 2 (2008), Article 9, May, 34 pages. issn:1049-331X https://doi.org/10.1145/1348250.1348255
[7]
Michael I. Gordon, Deokhwan Kim, Jeff H. Perkins, Limei Gilham, Nguyen Nguyen, and Martin C. Rinard. 2015. Information Flow Analysis of Android Applications in DroidSafe. In 22nd Annual Network and Distributed System Security Symposium, NDSS 2015, San Diego, California, USA, February 8-11, 2015. The Internet Society. https://www.ndss-symposium.org/ndss2015/information-flow-analysis-android-applications-droidsafe
[8]
Radu Grigore and Hongseok Yang. 2016. Abstraction Refinement Guided by a Learnt Probabilistic Model. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’16). ACM, New York, NY, USA. 485–498. isbn:978-1-4503-3549-2 https://doi.org/10.1145/2837614.2837663
[9]
Jingxuan He, Gagandeep Singh, Markus Püschel, and Martin Vechev. 2020. Learning Fast and Precise Numerical Analysis. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2020). Association for Computing Machinery, New York, NY, USA. 1112–1127. isbn:9781450376136 https://doi.org/10.1145/3385412.3386016
[10]
Kihong Heo, Hakjoo Oh, and Hongseok Yang. 2019. Resource-aware Program Analysis via Online Abstraction Coarsening. In Proceedings of the 41st International Conference on Software Engineering (ICSE ’19). IEEE Press, Piscataway, NJ, USA. 94–104. https://doi.org/10.1109/ICSE.2019.00027
[11]
Kihong Heo, Hakjoo Oh, and Kwangkeun Yi. 2017. Machine-learning-guided Selectively Unsound Static Analysis. In Proceedings of the 39th International Conference on Software Engineering (ICSE ’17). IEEE Press, Piscataway, NJ, USA. 519–529. isbn:978-1-5386-3868-2 https://doi.org/10.1109/ICSE.2017.54
[12]
Minseok Jeon, Sehun Jeong, Sungdeok Cha, and Hakjoo Oh. 2019. A Machine-Learning Algorithm with Disjunctive Model for Data-Driven Program Analysis. ACM Trans. Program. Lang. Syst., 41, 2 (2019), Article 13, June, 41 pages. issn:0164-0925 https://doi.org/10.1145/3293607
[13]
Minseok Jeon, Sehun Jeong, and Hakjoo Oh. 2018. Precise and Scalable Points-to Analysis via Data-driven Context Tunneling. Proc. ACM Program. Lang., 2, OOPSLA (2018), Article 140, Oct., 29 pages. issn:2475-1421 https://doi.org/10.1145/3276510
[14]
Minseok Jeon, Myungho Lee, and Hakjoo Oh. 2020. Learning Graph-Based Heuristics for Pointer Analysis without Handcrafting Application-Specific Features. Proc. ACM Program. Lang., 4, OOPSLA (2020), Article 179, Nov., 30 pages. https://doi.org/10.1145/3428247
[15]
Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh. 2017. Data-driven Context-sensitivity for Points-to Analysis. Proc. ACM Program. Lang., 1, OOPSLA (2017), Article 100, Oct., 28 pages. issn:2475-1421 https://doi.org/10.1145/3133924
[16]
George Kastrinis and Yannis Smaragdakis. 2013. Hybrid Context-sensitivity for Points-to Analysis. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’13). ACM, New York, NY, USA. 423–434. isbn:978-1-4503-2014-6 https://doi.org/10.1145/2491956.2462191
[17]
Uday P. Khedker and Bageshri Karkare. 2008. Efficiency, Precision, Simplicity, and Generality in Interprocedural Data Flow Analysis: Resurrecting the Classical Call Strings Method. In Compiler Construction, Laurie Hendren (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg. 213–228. isbn:978-3-540-78791-4
[18]
Uday P. Khedker, Alan Mycroft, and Prashant Singh Rawat. 2012. Liveness-Based Pointer Analysis. In Static Analysis, Antoine Miné and David Schmidt (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 265–282. isbn:978-3-642-33125-1
[19]
Ondřej Lhoták and Laurie Hendren. 2006. Context-Sensitive Points-to Analysis: Is It Worth It? In Compiler Construction, Alan Mycroft and Andreas Zeller (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 47–64. isbn:978-3-540-33051-6
[20]
Ondřej Lhoták and Laurie Hendren. 2008. Evaluating the Benefits of Context-sensitive Points-to Analysis Using a BDD-based Implementation. ACM Trans. Softw. Eng. Methodol., 18, 1 (2008), Article 3, Oct., 53 pages. issn:1049-331X https://doi.org/10.1145/1391984.1391987
[21]
Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2018. Precision-guided Context Sensitivity for Pointer Analysis. Proc. ACM Program. Lang., 2, OOPSLA (2018), Article 141, Oct., 29 pages. issn:2475-1421 https://doi.org/10.1145/3276511
[22]
Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2018. Scalability-first Pointer Analysis with Self-tuning Context-sensitivity. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2018). ACM, New York, NY, USA. 129–140. isbn:978-1-4503-5573-5 https://doi.org/10.1145/3236024.3236041
[23]
Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2020. A Principled Approach to Selective Context Sensitivity for Pointer Analysis. ACM Trans. Program. Lang. Syst., 42, 2 (2020), Article 10, May, 40 pages. issn:0164-0925 https://doi.org/10.1145/3381915
[24]
Donglin Liang, Maikel Pennings, and Mary Jean Harrold. 2005. Evaluating the Impact of Context-sensitivity on Andersen’s Algorithm for Java Programs. In Proceedings of the 6th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering (PASTE ’05). ACM, New York, NY, USA. 6–12. isbn:1-59593-239-9 https://doi.org/10.1145/1108792.1108797
[25]
Percy Liang and Mayur Naik. 2011. Scaling Abstraction Refinement via Pruning. In Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’11). ACM, New York, NY, USA. 590–601. isbn:978-1-4503-0663-8 https://doi.org/10.1145/1993498.1993567
[26]
Percy Liang, Omer Tripp, and Mayur Naik. 2011. Learning Minimal Abstractions. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’11). ACM, New York, NY, USA. 31–42. isbn:978-1-4503-0490-0 https://doi.org/10.1145/1926385.1926391
[27]
Jingbo Lu and Jingling Xue. 2019. Precision-preserving Yet Fast Object-sensitive Pointer Analysis with Partial Context Sensitivity. Proc. ACM Program. Lang., 3, OOPSLA (2019), Article 148, Oct., 29 pages. issn:2475-1421 https://doi.org/10.1145/3360574
[28]
Matthew Might, Yannis Smaragdakis, and David Van Horn. 2010. Resolving and Exploiting the k-CFA Paradox: Illuminating Functional vs. Object-Oriented Program Analysis. In Proceedings of the 31st ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’10). Association for Computing Machinery, New York, NY, USA. 305–315. isbn:9781450300193 https://doi.org/10.1145/1806596.1806631
[29]
Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2002. Parameterized Object Sensitivity for Points-to and Side-effect Analyses for Java. In Proceedings of the 2002 ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA ’02). ACM, New York, NY, USA. 1–11. isbn:1-58113-562-9 https://doi.org/10.1145/566172.566174
[30]
Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2005. Parameterized Object Sensitivity for Points-to Analysis for Java. ACM Trans. Softw. Eng. Methodol., 14, 1 (2005), Jan., 1–41. issn:1049-331X https://doi.org/10.1145/1044834.1044835
[31]
Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective Static Race Detection for Java. In Proceedings of the 27th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’06). ACM, New York, NY, USA. 308–319. isbn:1-59593-320-4 https://doi.org/10.1145/1133981.1134018
[32]
Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and Kwangkeun Yi. 2014. Selective Context-sensitivity Guided by Impact Pre-analysis. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’14). ACM, New York, NY, USA. 475–484. isbn:978-1-4503-2784-8 https://doi.org/10.1145/2594291.2594318
[33]
Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi. 2015. Learning a Strategy for Adapting a Program Analysis via Bayesian Optimisation. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA 2015). ACM, New York, NY, USA. 572–588. isbn:978-1-4503-3689-5 https://doi.org/10.1145/2814270.2814309
[34]
Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. 2011. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res., 12 (2011), Nov., 2825–2830. issn:1532-4435 http://dl.acm.org/citation.cfm?id=1953048.2078195
[35]
Hila Peleg, Sharon Shoham, and Eran Yahav. 2016. D^3: Data-Driven Disjunctive Abstraction. In Verification, Model Checking, and Abstract Interpretation, Barbara Jobstmann and K. Rustan M. Leino (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 185–205. isbn:978-3-662-49122-5
[36]
Micha Sharir and Amir Pnueli. 1981. Two approaches to interprocedural data flow analysis. Prentice-Hall, Englewood Cliffs, NJ. 189–234.
[37]
O. Shivers. 1988. Control Flow Analysis in Scheme. In Proceedings of the ACM SIGPLAN 1988 Conference on Programming Language Design and Implementation (PLDI ’88). ACM, New York, NY, USA. 164–174. isbn:0-89791-269-1 https://doi.org/10.1145/53990.54007
[38]
Gagandeep Singh, Markus Püschel, and Martin Vechev. 2018. Fast Numerical Program Analysis with Reinforcement Learning. In Computer Aided Verification, Hana Chockler and Georg Weissenbacher (Eds.). Springer International Publishing, Cham. 211–229. isbn:978-3-319-96145-3
[39]
Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analysis. Foundations and Trends in Programming Languages, 2, 1 (2015), 1–69. https://doi.org/10.1561/2500000014
[40]
Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick Your Contexts Well: Understanding Object-sensitivity. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’11). ACM, New York, NY, USA. 17–30. isbn:978-1-4503-0490-0 https://doi.org/10.1145/1926385.1926390
[41]
Yannis Smaragdakis, George Kastrinis, and George Balatsouras. 2014. Introspective Analysis: Context-sensitivity, Across the Board. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’14). ACM, New York, NY, USA. 485–495. isbn:978-1-4503-2784-8 https://doi.org/10.1145/2594291.2594320
[42]
Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. 2016. Boomerang: Demand-Driven Flow- and Context-Sensitive Pointer Analysis for Java. In 30th European Conference on Object-Oriented Programming (ECOOP 2016), Shriram Krishnamurthi and Benjamin S. Lerner (Eds.) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 56). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany. 22:1–22:26. isbn:978-3-95977-014-9 issn:1868-8969 https://doi.org/10.4230/LIPIcs.ECOOP.2016.22
[43]
Manu Sridharan and Rastislav Bodík. 2006. Refinement-based Context-sensitive Points-to Analysis for Java. In Proceedings of the 27th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’06). ACM, New York, NY, USA. 387–400. isbn:1-59593-320-4 https://doi.org/10.1145/1133981.1134027
[44]
Manu Sridharan, Julian Dolby, Satish Chandra, Max Schäfer, and Frank Tip. 2012. Correlation Tracking for Points-to Analysis of Javascript. In Proceedings of the 26th European Conference on Object-Oriented Programming (ECOOP’12). Springer-Verlag, Berlin, Heidelberg. 435–458. isbn:978-3-642-31056-0 https://doi.org/10.1007/978-3-642-31057-7_20
[45]
Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodík. 2005. Demand-driven Points-to Analysis for Java. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications (OOPSLA ’05). ACM, New York, NY, USA. 59–76. isbn:1-59593-031-0 https://doi.org/10.1145/1094811.1094817
[46]
Tian Tan, Yue Li, and Jingling Xue. 2016. Making k-Object-Sensitive Pointer Analysis More Precise with Still k-Limiting. In Static Analysis, Xavier Rival (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg. 489–510. isbn:978-3-662-53413-7
[47]
Tian Tan, Yue Li, and Jingling Xue. 2017. Efficient and Precise Points-to Analysis: Modeling the Heap by Merging Equivalent Automata. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2017). ACM, New York, NY, USA. 278–291. isbn:978-1-4503-4988-8 https://doi.org/10.1145/3062341.3062360
[48]
Manas Thakur and V. Krishna Nandivada. 2019. Compare Less, Defer More: Scaling Value-contexts Based Whole-program Heap Analyses. In Proceedings of the 28th International Conference on Compiler Construction (CC 2019). ACM, New York, NY, USA. 135–146. isbn:978-1-4503-6277-1 https://doi.org/10.1145/3302516.3307359
[49]
Rei Thiessen and Ondřej Lhoták. 2017. Context Transformations for Pointer Analysis. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2017). ACM, New York, NY, USA. 263–277. isbn:978-1-4503-4988-8 https://doi.org/10.1145/3062341.3062359
[50]
Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weisman. 2009. TAJ: Effective Taint Analysis of Web Applications. In Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’09). ACM, New York, NY, USA. 87–97. isbn:978-1-60558-392-1 https://doi.org/10.1145/1542476.1542486
[51]
Shiyi Wei and Barbara G. Ryder. 2015. Adaptive Context-sensitive Analysis for JavaScript. In 29th European Conference on Object-Oriented Programming (ECOOP 2015), John Tang Boyland (Ed.) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 37). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany. 712–734. isbn:978-3-939897-86-6 issn:1868-8969 https://doi.org/10.4230/LIPIcs.ECOOP.2015.712
[52]
John Whaley and Monica S. Lam. 2004. Cloning-based Context-sensitive Pointer Alias Analysis Using Binary Decision Diagrams. In Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation (PLDI ’04). ACM, New York, NY, USA. 131–144. isbn:1-58113-807-5 https://doi.org/10.1145/996841.996859
[53]
Guoqing Xu and Atanas Rountev. 2008. Merging Equivalent Contexts for Scalable Heap-cloning-based Context-sensitive Points-to Analysis. In Proceedings of the 2008 International Symposium on Software Testing and Analysis (ISSTA ’08). ACM, New York, NY, USA. 225–236. isbn:978-1-60558-050-0 https://doi.org/10.1145/1390630.1390658
[54]
Guoqing Xu, Atanas Rountev, and Manu Sridharan. 2009. Scaling CFL-Reachability-Based Points-To Analysis Using Context-Sensitive Must-Not-Alias Analysis. In ECOOP 2009 – Object-Oriented Programming, Sophia Drossopoulou (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg. 98–122. isbn:978-3-642-03013-0
[55]
X. Xu, Y. Sui, H. Yan, and J. Xue. 2019. VFix: Value-Flow-Guided Precise Program Repair for Null Pointer Dereferences. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). 512–523.
[56]
Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok Yang. 2014. On Abstraction Refinement for Program Analyses in Datalog. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’14). ACM, New York, NY, USA. 239–248. isbn:978-1-4503-2784-8 https://doi.org/10.1145/2594291.2594327

Cited By

View all
  • (2024)TIPS: Tracking Integer-Pointer Value Flows for C++ Member Function PointersProceedings of the ACM on Software Engineering10.1145/36607791:FSE(1609-1631)Online publication date: 12-Jul-2024
  • (2024)Learning Abstraction Selection for Bayesian Program AnalysisProceedings of the ACM on Programming Languages10.1145/36498458:OOPSLA1(954-982)Online publication date: 29-Apr-2024
  • (2024)Generic Sensitivity: Generics-Guided Context Sensitivity for Pointer AnalysisIEEE Transactions on Software Engineering10.1109/TSE.2024.337764550:5(1144-1162)Online publication date: May-2024
  • Show More Cited By

Index Terms

  1. Return of CFA: call-site sensitivity can be superior to object sensitivity even for object-oriented programs

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Proceedings of the ACM on Programming Languages
    Proceedings of the ACM on Programming Languages  Volume 6, Issue POPL
    January 2022
    1886 pages
    EISSN:2475-1421
    DOI:10.1145/3511309
    Issue’s Table of Contents
    This work is licensed under a Creative Commons Attribution International 4.0 License.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 12 January 2022
    Published in PACMPL Volume 6, Issue POPL

    Permissions

    Request permissions for this article.

    Check for updates

    Badges

    Author Tags

    1. Context sensitivity
    2. Machine learning for program analysis
    3. Pointer analysis

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)252
    • Downloads (Last 6 weeks)36
    Reflects downloads up to 16 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)TIPS: Tracking Integer-Pointer Value Flows for C++ Member Function PointersProceedings of the ACM on Software Engineering10.1145/36607791:FSE(1609-1631)Online publication date: 12-Jul-2024
    • (2024)Learning Abstraction Selection for Bayesian Program AnalysisProceedings of the ACM on Programming Languages10.1145/36498458:OOPSLA1(954-982)Online publication date: 29-Apr-2024
    • (2024)Generic Sensitivity: Generics-Guided Context Sensitivity for Pointer AnalysisIEEE Transactions on Software Engineering10.1109/TSE.2024.337764550:5(1144-1162)Online publication date: May-2024
    • (2023)A Container-Usage-Pattern-Based Context Debloating Approach for Object-Sensitive Pointer AnalysisProceedings of the ACM on Programming Languages10.1145/36228327:OOPSLA2(971-1000)Online publication date: 16-Oct-2023
    • (2023)Tai-e: A Developer-Friendly Static Analysis Framework for Java by Harnessing the Good Designs of ClassicsProceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis10.1145/3597926.3598120(1093-1105)Online publication date: 12-Jul-2023
    • (2023)Context Sensitivity without Contexts: A Cut-Shortcut Approach to Fast and Precise Pointer AnalysisProceedings of the ACM on Programming Languages10.1145/35912427:PLDI(539-564)Online publication date: 6-Jun-2023
    • (2023)Automatic Generation and Reuse of Precise Library Summaries for Object-Sensitive Pointer AnalysisProceedings of the 38th IEEE/ACM International Conference on Automated Software Engineering10.1109/ASE56229.2023.00039(736-747)Online publication date: 11-Nov-2023

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Full Access

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media