Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3476446.3536172acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

On the Computation of the Zariski Closure of Finitely Generated Groups of Matrices

Published: 05 July 2022 Publication History

Abstract

We investigate the complexity of computing the Zariski closure of a finitely generated group of matrices. The Zariski closure was previously shown to be computable by Derksen, Jeandel, and Koiran, but the termination argument for their algorithm appears not to yield any complexity bound. In this paper we follow a different approach and obtain a bound on the degree of the polynomials that define the closure. Our bound shows that the closure can be computed in elementary time. We also obtain upper bounds on the length of chains of linear algebraic groups.

References

[1]
E. Amzallag. 2018. Galois groups of differential equations and representing algebraic sets. Ph.D. Dissertation. CUNY Academic Works. https://academicworks.cuny.edu/gc_etds/2860
[2]
E. Amzallag, A. Minchenko, and G. Pogudin. 2021. Degree bound for toric envelope of a linear algebraic group. arXiv:1809.06489 [math.AG]
[3]
M. Aschenbrenner. 2004. Ideal membership in polynomial rings over the integers. J. Amer. Math. Soc. 17 (2004), 407--441. https://doi.org/10.1090/S0894-0347-04-00451--5
[4]
T. Becker and V. Weispfenning. 1993. Gröbner Bases. Graduate Texts in Mathematics, Vol. 141. Springer. https://doi.org/10.1007/978--1--4612-0913--3
[5]
V. Blondel and V. Canterini. 2001. Undecidable problems for probabilistic automata of fixed dimension. Theory Comput. Syst. 36 (2001), 231--245. https://doi.org/10.1007/s00224-003--1061--2
[6]
V.D. Blondel, E. Jeandel, P. Koiran, and N. Portier. 2005. Decidable and undecidable problems about quantum automata. SIAM J. Comput. 34, 6 (2005), 1464--1473. https://doi.org/10.1137/S0097539703425861
[7]
A. Borel. 1966. Linear algebraic groups. In Algebraic Groups and Discontinuous Subgroups, A. Borel and G. D. Mostow (Eds.). Proc. Symposia Pure Math., Vol. 9. 3--19. https://doi.org/10.1090/pspum/009
[8]
A. R. Bradley and Z. Manna. 2007. Invariant generation. Springer, Chapter 12, 311--346. https://doi.org/10.1007/978--3--540--74113--8_12
[9]
G. Bumpus, C. Haase, S. Kiefer, P.-I. Stoienescu, and J. Tanner. 2020. On the size of finite rational matrix semigroups. In Proc. ICALP 2020 (LIPIcs, Vol. 168). 115:1--115:13. https://doi.org/10.4230/LIPIcs.ICALP.2020.115
[10]
J. Cai, R. J. Lipton, and Y. Zalcstein. 2000. The complexity of the A B C problem. SIAM J. Comput. 29, 6 (2000), 1878--1888.
[11]
W. A. de Graaf. 2017. Computation with Linear Algebraic Groups. CRC Press.
[12]
H. Derksen, E. Jeandel, and P. Koiran. 2005. Quantum automata and algebraic groups. J. Symb. Comput. 39, 3--4 (2005), 357--371. https://doi.org/10.1016/j.jsc.2004.11.008
[13]
T. W. Dubé. 1990. The Structure of polynomial ideals and Gröbner bases. SIAM J. Comput. 19, 4 (1990), 750--773. https://doi.org/10.1137/0219053
[14]
R. Feng. 2015. Hrushovski's Algorithm for computing the Galois group of a linear differential equation. Adv. Appl. Math. 65 (2015), 1--37. https://doi.org/10.1016/j.aam.2015.01.001
[15]
S. Friedland. 1997. The maximal orders of finite subgroups in GL?? (Q). Proc. Am. Math. Soc. 125, 12 (1997), 3519--3526. https://doi.org/10.1090/S0002--9939--97-04283--4
[16]
G. Gallo and B. Mishra. 1994. A solution to Kronecker's Problem. Appl. Algebra Eng. Commun. 5 (1994), 343--370. https://doi.org/10.1007/BF01188747
[17]
R. M. Guralnick and M. Lorenz. 2006. Orders of finite groups of matrices. In Groups, Rings and Algebras. Contemp. Math., Vol. 420. AMS, 141--161. https://doi.org/10.1090/conm/420/07974
[18]
E. Hrushovski. 2002. Computing the Galois group of a linear differential equation. Banach Center Publications 58, 1 (2002), 97--138. https://doi.org/10.4064/bc58-0--9
[19]
E. Hrushovski, J. Ouaknine, A. Pouly, and J. Worrell. 2018. Polynomial invariants for affine programs. In Proc. LICS 2018. ACM, 530--539. https://doi.org/10.1145/3209108.3209142
[20]
J. E. Humphreys. 1975. Linear Algebraic Groups. Graduate Texts in Mathematics, Vol. 21. Springer. https://doi.org/10.1007/978--1--4684--9443--3
[21]
M. Karr. 1976. Affine relationships among variables of a program. Acta Inf. 6 (1976), 133--151. https://doi.org/10.1007/BF00268497
[22]
J. Kuzmanovich and A. Pavlichenkov. 2002. Finite groups of matrices whose entries are integers. Am. Math. Mon. 109, 2 (2002), 173--186. https://doi.org/10.1080/00029890.2002.11919850
[23]
C. C. MacDuffee. 1933. The Theory of Matrices. Ergebnisse der Mathematik und Ihrer Grenzgebiete, Vol. 5. Springer. https://doi.org/10.1007/978--3--642--99234--6
[24]
D. W. Masser. 1988. Linear relations on algebraic groups. In New Advances in Transcendence Theory. Cambridge University Press, 248--262. https://doi.org/10.1017/CBO9780511897184.016
[25]
K. A. Mikhailova. 1966. The occurrence problem for direct products of groups. Mat. Sb. (N.S.) 70(112), 2 (1966), 241--251. http://mi.mathnet.ru/eng/msb4223
[26]
C. F. Miller. 1972. On Group-Theoretic Decision Problems and Their Classification. Annals of Mathematics Studies, Vol. 68. Princeton University Press. https://doi.org/10.1515/9781400881789
[27]
G. Moreno Socias. 1992. Length of polynomial ascending chains and primitive recursiveness. Math. Scand. 71 (1992), 181--205. https://doi.org/10.7146/math.scand.a-12421
[28]
D. W. Morris. 2001. Introduction to Arithmetic Groups. arXiv:math/0106063 [math.DG]
[29]
M. Müller-Olm and H. Seidl. 2004. A note on Karr's Algorithm. In Proc. ICALP 2004 (Lect. Notes Comput. Sci., Vol. 3142). Springer, 1016--1028. https://doi.org/10.1007/978--3--540--27836--8_85
[30]
M. Newman. 1972. Integral Matrices. Pure and Applied Mathematics, Vol. 45. Academic Press.
[31]
K. Nosan. 2020. On the complexity of computing the algebraic closure of a finitely generated matrix semigroup. Internship Report. École Polytechnique. https://www.irif.fr/~nosan/Reports/M1report.pdf
[32]
D. Novikov and S. Yakovenko. 1999. Trajectories of polynomial vector fields and ascending chains of polynomial ideals. Ann. Inst. Fourier 49, 2 (1999), 563--609. https://doi.org/10.5802/aif.1683
[33]
A. Paz. 1971. Introduction to Probabilistic Automata. Academic Press, Inc.
[34]
J. Renegar. 1992. On the computational complexity and geometry of the firstorder theory of the reals. I, II, and III. J. Symb. Comput. 13, 3 (1992), 255--352. https://doi.org/10.1016/S0747--7171(10)80003--3
[35]
A. Seidenberg. 1972. Constructive proof of Hilbert's Theorem on ascending chains. Trans. Amer. Math. Soc. 174 (1972), 305--312. https://doi.org/10.1090/S0002--9947--1972-0314829--9
[36]
Á. Seress. 2003. Permutation Group Algorithms. Cambridge Tracts in Mathematics, Vol. 152. Cambridge University Press. https://doi.org/10.1017/CBO9780511546549
[37]
M. Sun. 2019. A new bound on Hrushovski's Algorithm for computing the Galois group of a linear differential equation. Commun. Algebra 47, 9 (2019), 3553--3566. https://doi.org/10.1080/00927872.2019.1567750
[38]
B. Weisfeiler. 1985. Post-classification version of Jordan's Theorem on finite linear groups. Proc. Natl. Acad. Sci. U.S.A. 81 (1985), 5278--5279. https://doi.org/10.1073/pnas.81.16.5278

Cited By

View all

Index Terms

  1. On the Computation of the Zariski Closure of Finitely Generated Groups of Matrices

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ISSAC '22: Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation
    July 2022
    547 pages
    ISBN:9781450386883
    DOI:10.1145/3476446
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 05 July 2022

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. algebraic geometry
    2. algebraic groups
    3. zariski topology

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    ISSAC '22
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 395 of 838 submissions, 47%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 104
      Total Downloads
    • Downloads (Last 12 months)30
    • Downloads (Last 6 weeks)3
    Reflects downloads up to 19 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media