Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3476446.3536170acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article
Open access

Explicit Bounds for Linear Forms in the Exponentials of Algebraic Numbers

Published: 05 July 2022 Publication History

Abstract

In this paper, we study linear forms λ=β1eα1+...βmeαm, where α_i and β_i are algebraic numbers. An explicit lower bound for the absolute value of λ is proved, which is derived from "theoreme me de Lindemann--Weierstrass effectif'' via constructive methods in algebraic computation. Besides, the existence of λ with an explicit upper bound is established on the result of counting algebraic numbers.

References

[1]
REFERENCES [1] Mohammed Ably. 1994. Une version quantitative du théorème de LindemannWeierstrass. Acta Arithmetica 67 (1994), 29--45.
[2]
Shaull Almagor, Dmitry Chistikov, Joël Ouaknine, and James Worrell. 2018. Ominimal invariants for linear loops. In 45th International Colloquium on Automata, Languages, and Programming. Schloss Dagstuhl, 1--14.
[3]
Hirokazu Anai and Volker Weispfenning. 2000. Deciding linear-trigonometric problems. In 25th international symposium on Symbolic and algebraic computation. 14--22.
[4]
James Ax. 1971. On Schanuel's conjectures. Annals of mathematics 93, 2 (1971), 252--268.
[5]
Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert K. Brayton. 1996. Verifying Continuous Time Markov Chains. In Computer Aided Verification, 8th International Conference, Vol. 1102. 269--276.
[6]
Alan Baker. 1990. Transcendental number theory. Cambridge university press.
[7]
Saugata Basu, Richard Pollack, and Marie-Françoise Roy. 2003. Algorithms in Real Algebraic Geometry. Springer.
[8]
Paul C Bell, Jean-Charles Delvenne, Raphaël M Jungers, and Vincent D Blondel. 2010. The continuous skolem-pisot problem. Theoretical Computer Science 411, 40--42 (2010), 3625--3634.
[9]
John Canny. 1988. The complexity of robot motion planning. MIT press.
[10]
Georg Cantor. 1874. Ueber eine Eigenschaft des Inbegriffs aller reellen algebraischen Zahlen. Journal für die reine und angewandte Mathematik 77 (1874), 258--262.
[11]
Taolue Chen, Nengkun Yu, and Tingting Han. 2015. Continuous-time orbit problems are decidable in polynomial-time. Inform. Process. Lett. 115, 1 (2015), 11--14.
[12]
Dmitry Chistikov, Stefan Kiefer, Andrzej S Murawski, and David Purser. 2020. The Big-O Problem for Labelled Markov Chains and Weighted Automata. In 31st International Conference on Concurrency Theory.
[13]
Ventsislav Chonev, Joël Ouaknine, and James Worrell. 2016. On the Skolem Problem for Continuous Linear Dynamical Systems. In 43rd International Colloquium on Automata, Languages, and Programming, Vol. 55. 100:1--100:13.
[14]
Henri Cohen, Henry Cohen, and Henri Cohen. 1993. A course in computational algebraic number theory. Vol. 8. Springer-Verlag Berlin.
[15]
George E Collins and Ellis Horowitz. 1974. The minimum root separation of a polynomial. mathematics of computation 28, 126 (1974), 589--597.
[16]
Yuan Feng and Lijun Zhang. 2017. Precisely deciding CSL formulas through approximate model checking for CTMCs. J. Comput. System Sci. 89 (2017), 361-- 371.
[17]
Ignacio García-Marco, Pascal Koiran, and Timothée Pecatte. 2018. Polynomial equivalence problems for sum of affine powers. In Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation. 303--310.
[18]
Charles Hermite. 1874. Sur la fonction exponentielle. Gauthier-Villars.
[19]
Cheng-Chao Huang, Jing-Cao Li, Ming Xu, and Zhi-Bin Li. 2018. Positive root isolation for poly-powers by exclusion and differentiation. Journal of Symbolic Computation 85 (2018), 148--169.
[20]
Arjen K Lenstra. 1983. Factoring polynomials over algebraic number fields. In European Conference on Computer Algebra. Springer, 245--254.
[21]
Arjen K Lenstra, Hendrik Willem Lenstra, and László Lovász. 1982. Factoring polynomials with rational coefficients. Mathematische annalen 261, ARTICLE (1982), 515--534.
[22]
Ferdinand Lindemann. 1882. Ueber die Zahl ??.*. Math. Ann. 20, 2 (1882), 213--225.
[23]
Joseph Liouville. 1844. Sur des classes très-étendues de quantités dont la valeur n'est ni algébrique ni même réductible à des irrationnelles algébriques. CR Acad. Sci. Paris 18 (1844), 883--885.
[24]
Rüdiger Loos. 1982. Computing in algebraic extensions. In Computer algebra. Springer, 173--187.
[25]
Kurt Mahler. 1932. Zur Approximation der Exponentialfunktion und des Logarithmus. Teil I. (1932), 118--136. (1932).
[26]
Kurt Mahler. 1960. An application of Jensen's formula to polynomials. Mathematika 7, 2 (1960), 98--100.
[27]
Kurt Mahler et al. 1964. An inequality for the discriminant of a polynomial. Michigan Mathematical Journal 11, 3 (1964), 257--262.
[28]
Rupak Majumdar, Mahmoud Salamati, and Sadegh Soudjani. 2020. On Decidability of Time-Bounded Reachability in CTMDPs. In 47th International Colloquium on Automata, Languages, and Programming.
[29]
Rupak Majumdar and Sadegh Soudjani. 2021. The computability of LQR and LQG control. In 24th International Conference on Hybrid Systems: Computation and Control. 1--7.
[30]
Scott McCallum and Volker Weispfenning. 2012. Deciding polynomialtranscendental problems. Journal of Symbolic Computation 47, 1 (2012), 16--31.
[31]
Douglas G Northcott. 1949. An inequality in the theory of arithmetic on algebraic varieties. In Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 45. Cambridge University Press, 502--509.
[32]
Patrice Philippon. 1986. Critères pour l'indépendance algébrique. Publications Mathématiques de l'IHÉS 64 (1986), 5--52.
[33]
Wolfgang M Schmidt. 1993. Northcott's theorem on heights I. A general estimate. Monatshefte für Mathematik 115, 1 (1993), 169--181.
[34]
Alain Sert. 1999. Une version effective du théorème de Lindemann--Weierstrass par les déterminants d'interpolation. Journal of Number Theory 76, 1 (1999), 94--119.
[35]
Carl L Siegel. 2014. Über einige anwendungen diophantischer approximationen. In On Some Applications of Diophantine Approximations. Springer, 81--138.
[36]
Adam Strzebonski. 2009. Real root isolation for tame elementary functions. In 34th international symposium on Symbolic and algebraic computation. 341--350.
[37]
Michel Waldschmidt. 2013. Diophantine approximation on linear algebraic groups: transcendence properties of the exponential function in several variables. Vol. 326. Springer Science & Business Media.
[38]
Karl Weierstrass. 1885. Zu Lindemann's Abhandlung:Über die Ludolph'sche Zahl". Sitzungber. Königl. Preuss. Akad. Wissensch 2 (1885), 1067--1086.
[39]
Ming Xu, Jingyi Mei, Ji Guan, and Nengkun Yu. 2021. Model Checking Quantum Continuous-Time Markov Chains. In 32nd International Conference on Concurrency Theory, Vol. 203. 13:1--13:17.
[40]
Ming Xu, Lijun Zhang, David N Jansen, Huibiao Zhu, and Zongyuan Yang. 2016. Multiphase until formulas over Markov reward models: An algebraic approach. Theoretical Computer Science 611 (2016), 116--135.
[41]
Kazuhiro Yokoyama, Masayuki Noro, and Taku Takeshima. 1989. Computing primitive elements of extension fields. Journal of symbolic computation 8, 6 (1989), 553--580.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
ISSAC '22: Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation
July 2022
547 pages
ISBN:9781450386883
DOI:10.1145/3476446
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 05 July 2022

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. algebraic computation
  2. computational number theory
  3. lindemann--weierstrass theorem
  4. transcendental number theory

Qualifiers

  • Research-article

Conference

ISSAC '22
Sponsor:

Acceptance Rates

Overall Acceptance Rate 395 of 838 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 119
    Total Downloads
  • Downloads (Last 12 months)54
  • Downloads (Last 6 weeks)6
Reflects downloads up to 13 Feb 2025

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media