Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3476446.3535504acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

The Membership Problem for Hypergeometric Sequences with Rational Parameters

Published: 05 July 2022 Publication History

Abstract

We investigate the Membership Problem for hypergeometric sequences: given a hypergeometric sequence ❬un❭∞n=0 of rational numbers and a target t∈Q, decide whether t occurs in the sequence. We show decidability of this problem under the assumption that in the defining recurrence p(n)un = q(n)un-1, the roots of the polynomials p(x) and q(x) are all rational numbers. Our proof relies on bounds on the density of primes in arithmetic progressions. We also observe a relationship between the decidability of the Membership problem (and variants) and the Rohrlich-Lang conjecture in transcendence theory.

References

[1]
T. Amdeberhan, L. Medina, and V. Moll. 2007. Asymptotic valuations of sequences satisfying first order recurrences. Proc. Amer. Math. Soc., Vol. 137 (10 2007), 885--890.
[2]
Y. André. 2004. Une introduction aux motifs (motifs purs, motifs mixtes, périodes). Panoramas et Synthèses, Vol. 17. Société Mathématique de France.
[3]
J. Bell, S. Burris, and K. Yeats. 2011. On the set of zero coefficients of a function satisfying a linear differential equation. Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 153 (05 2011), 235--247.
[4]
M. A. Bennett, G. Martin, K. O'Bryant, and A. Rechnitzer. 2018. Explicit bounds for primes in arithmetic progressions. Illinois Journal of Mathematics, Vol. 62, 1--4 (2018), 427 -- 532.
[5]
M. Chamberland and A. Straub. 2013. On gamma quotients and infinite products. Advances in Applied Mathematics, Vol. 51, 5 (2013), 546--562.
[6]
E. Delaygue, T. Rivoal, and J. Roques. 2013. On Dwork's p-adic formal congruences theorem and hypergeometric mirror maps. Memoirs of the American Mathematical Society, Vol. 246 (09 2013). https://doi.org/10.1090/memo/1163
[7]
M. Kauers and P. Paule. 2011. The Concrete Tetrahedron - Symbolic Sums, Recurrence Equations, Generating Functions, Asymptotic Estimates .Springer.
[8]
M. Kauers and V. Pillwein. 2010. When can we detect that a P-finite sequence is positive?. In Symbolic and Algebraic Computation, International Symposium, ISSAC, Proceedings, Wolfram Koepf (Ed.). ACM, 195--201.
[9]
G. Kenison, O. Klurman, E. Lefaucheux, F. Luca, P. Moree, J. Ouaknine, A. Whiteland, and J. Worrell. 2020. On Inequality Decision Prolems for Low-Order Holonomic Sequences .arxiv: 2007.12282 Submitted.
[10]
G. Kenison, O. Klurman, E. Lefaucheux, F. Luca, P. Moree, J. Ouaknine, M. A. Whiteland, and J. Worrell. 2021. On Positivity and Minimality for Second-Order Holonomic Sequences. In 46th International Symposium on Mathematical Foundations of Computer Science, MFCS (LIPIcs, Vol. 202). Schloss Dagstuhl - Leibniz-Zentrum fü r Informatik, 67:1--67:15.
[11]
N. Koblitz and A. Ogus. 1979. Algebraicity of some products of values of the F function, Appendix of Valeurs de fonctions L et periodes d'intégrales. Proceedings of Symposia in Pure Mathematics, Vol. 33 (1979), part 2, 313--346.
[12]
S. Lang. 1977--1978. Relations de distributions et exemples classiques. Séminaire Delange-Pisot-Poitou. Théorie des nombres, Vol. 19, 2 (1977--1978).
[13]
M. Mignotte, T. N. Shorey, and R. Tijdeman. 1984. The distance between terms of an algebraic recurrence sequence. Journal für die reine und angewandte Mathematik, Vol. 349 (1984).
[14]
J. Nagura. 1952. On The Interval Containing At Least One Prime Number. Proceedings of the Japan Academy, Vol. 28, 4 (1952), 177--181. https://doi.org/10.3792/pja/1195570997
[15]
E. Neumann, J. Ouaknine, and J. Worrell. 2021. Decision Problems for Second-Order Holonomic Recurrences. In 48th International Colloquium on Automata, Languages, and Programming, ICALP (LIPIcs, Vol. 198). Schloss Dagstuhl - Leibniz-Zentrum fü r Informatik, 99:1--99:20.
[16]
M. Petkovsek, H. Wilf, and D. Zeilberger. 1997. A=B. A K Peters.
[17]
V. Pillwein and M. Schussler. 2015. An efficient procedure deciding positivity for a class of holonomic functions. ACM Commun. Comput. Algebra, Vol. 49, 3 (2015), 90--93.
[18]
N. K. Vereshchagin. 1985. The problem of appearance of a zero in a linear recurrence sequence (in Russian). Mat. Zametki, Vol. 38, 2 (1985).
[19]
M. Waldschmidt. 2006. Transcendence of periods: the state of the art. Pure and Applied Mathematics Quarterly, Vol. 2, 2 (2006), 435--463.

Cited By

View all
  • (2023)The Membership Problem for Hypergeometric Sequences with Quadratic ParametersProceedings of the 2023 International Symposium on Symbolic and Algebraic Computation10.1145/3597066.3597121(407-416)Online publication date: 24-Jul-2023
  • (2023)Fuchsian holonomic sequencesApplicable Algebra in Engineering, Communication and Computing10.1007/s00200-023-00616-4Online publication date: 24-Sep-2023

Index Terms

  1. The Membership Problem for Hypergeometric Sequences with Rational Parameters

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ISSAC '22: Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation
    July 2022
    547 pages
    ISBN:9781450386883
    DOI:10.1145/3476446
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 05 July 2022

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. decidability
    2. hypergeometric sequences
    3. reachability
    4. skolem problem

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    ISSAC '22
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 395 of 838 submissions, 47%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)20
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 19 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)The Membership Problem for Hypergeometric Sequences with Quadratic ParametersProceedings of the 2023 International Symposium on Symbolic and Algebraic Computation10.1145/3597066.3597121(407-416)Online publication date: 24-Jul-2023
    • (2023)Fuchsian holonomic sequencesApplicable Algebra in Engineering, Communication and Computing10.1007/s00200-023-00616-4Online publication date: 24-Sep-2023

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media