Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3472749.3474758acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article
Open access

EIT-kit: An Electrical Impedance Tomography Toolkit for Health and Motion Sensing

Published: 12 October 2021 Publication History

Abstract

In this paper, we propose EIT-kit, an electrical impedance tomography toolkit for designing and fabricating health and motion sensing devices. EIT-kit contains (1) an extension to a 3D editor for personalizing the form factor of electrode arrays and electrode distribution, (2) a customized EIT sensing motherboard for performing the measurements, (3) a microcontroller library that automates signal calibration and facilitates data collection, and (4) an image reconstruction library for mobile devices for interpolating and visualizing the measured data. Together, these EIT-kit components allow for applications that require 2- or 4-terminal setups, up to 64 electrodes, and single or multiple (up to four) electrode arrays simultaneously.
We motivate the design of each component of EIT-kit with a formative study, and conduct a technical evaluation of the data fidelity of our EIT measurements. We demonstrate the design space that EIT-kit enables by showing various applications in health as well as motion sensing and control.

Supplementary Material

MP4 File (p400-video_figure.mp4)
Supplemental videos
MP4 File (p400-video_figure_captions.mp4)
Supplemental videos
MP4 File (p400-video_preview.mp4)
Supplemental videos
MP4 File (p400-video_preview_captions.mp4)
Supplemental videos

References

[1]
3M. [n.d.]. 3M™ Red Dot™ ECG Monitoring Electrodes. https://www.3m.com/3M/en_US/company-us/all-3m-products/~/3M-Red-Dot-ECG-Monitoring-Electrodes-Pediatric-with-3M-Micropore-Tape-Backing-2248-50/?N=5002385+3289400428&rt=rud
[2]
Andy Adler, John H Arnold, Richard Bayford, Andrea Borsic, Brian Brown, Paul Dixon, Theo J C Faes, Inéz Frerichs, Hervé Gagnon, Yvo Gärber, Bartłomiej Grychtol, Günter Hahn, William R B Lionheart, Anjum Malik, Robert P Patterson, Janet Stocks, Andrew Tizzard, Norbert Weiler, and Gerhard K Wolf. 2009. GREIT: a unified approach to 2D linear EIT reconstruction of lung images. Physiological Measurement 30, 6 (jun 2009), S35–S55. https://doi.org/10.1088/0967-3334/30/6/s03
[3]
Andy Adler and William R B Lionheart. 2006. Uses and abuses of EIDORS: an extensible software base for EIT. Physiological Measurement 27, 5 (apr 2006), S25–S42. https://doi.org/10.1088/0967-3334/27/5/s03
[4]
John H. Arnold. 2004. Electrical impedance tomography: on the path to the Holy Grail. Crit Care Med (Mar 2004), 894–5. https://doi.org/10.1097/01.ccm.0000115261.88801.24
[5]
Patrick Baudisch and Stefanie Mueller. 2017. Personal Fabrication. Foundations and Trends® in Human–Computer Interaction 10, 3–4(2017), 165–293. https://doi.org/10.1561/1100000055
[6]
T. K. Bera. 2014. Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review. J Med Eng 2014(2014), 381251.
[7]
Mindseye Biomedical. [n.d.]. OpenEIT. https://github.com/OpenEIT
[8]
Alistair Boyle and Andy Adler. 2011. The impact of electrode area, contact impedance and boundary shape on EIT images. Physiological Measurement 32, 7 (jun 2011), 745–754. https://doi.org/10.1088/0967-3334/32/7/s02
[9]
Cory Cornelius, Ronald Peterson, Joseph Skinner, Ryan Halter, and David Kotz. 2014. A Wearable System That Knows Who Wears It. In Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and Services (Bretton Woods, New Hampshire, USA) (MobiSys ’14). Association for Computing Machinery, New York, NY, USA, 55–67. https://doi.org/10.1145/2594368.2594369
[10]
K. A. Dines and R. J. Lytle. 1981. Analysis of electrical conductivity imaging. GEOPHYSICS 46, 7 (1981), 1025–1036. https://doi.org/10.1190/1.1441240 arXiv:https://doi.org/10.1190/1.1441240
[11]
T Dowrick, C Blochet, and D Holder. 2015. In vivobioimpedance measurement of healthy and ischaemic rat brain: implications for stroke imaging using electrical impedance tomography. Physiological Measurement 36, 6 (may 2015), 1273–1282. https://doi.org/10.1088/0967-3334/36/6/1273
[12]
Lex Fridman, Heishiro Toyoda, Sean Seaman, Bobbie Seppelt, Linda Angell, Joonbum Lee, Bruce Mehler, and Bryan Reimer. 2017. What Can Be Predicted from Six Seconds of Driver Glances?. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM, 2805–2813.
[13]
H. Ghaednia, T.N. Tallman, C.E. Owens, A.J. Hart, and K.M. Varadarajan. 2020. NON-INVASIVE DIAGNOSIS OF ASEPTIC IMPLANT LOOSENING VIA ELECTRICAL IMPEDANCE TOMOGRAPHY. Orthopaedic Proceedings 102-B, SUPP_1 (2020), 130–130. https://doi.org/10.1302/1358-992X.2020.1.130 arXiv:https://online.boneandjoint.org.uk/doi/pdf/10.1302/1358-992X.2020.1.130
[14]
Saul Greenberg. 2007. Toolkits and interface creativity. Multimedia Tools and Applications 32 (2007), 139–159. https://doi.org/10.1007/s11042-006-0062-y
[15]
Saul Greenberg and Chester Fitchett. 2001. Phidgets: Easy Development of Physical Interfaces through Physical Widgets. In Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology(Orlando, Florida) (UIST ’01). Association for Computing Machinery, New York, NY, USA, 209–218. https://doi.org/10.1145/502348.502388
[16]
R. Harikumar, R. Prabu, and S. Raghavan. 2013. Electrical Impedance Tomography (EIT) and Its Medical Applications: A Review. International Journal of Soft Computing and Engineering.
[17]
Steve Hodges, James Scott, Sue Sentance, Colin Miller, Nicolas Villar, Scarlet Schwiderski-Grosche, Kerry Hammil, and Steven Johnston. 2013...NET Gadgeteer: A New Platform for K-12 Computer Science Education. In Proceeding of the 44th ACM Technical Symposium on Computer Science Education (Denver, Colorado, USA) (SIGCSE ’13). Association for Computing Machinery, New York, NY, USA, 391–396. https://doi.org/10.1145/2445196.2445315
[18]
David Holder. 2005. Electrical Impedance Tomography : Methods, History and Applications. Vol. 32. Institute of Physics. https://doi.org/10.1118/1.1995712
[19]
Steven Houben and Nicolai Marquardt. 2015. WatchConnect: A Toolkit for Prototyping Smartwatch-Centric Cross-Device Applications. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI ’15). Association for Computing Machinery, New York, NY, USA, 1247–1256. https://doi.org/10.1145/2702123.2702215
[20]
Apple Inc.[n.d.]. Create ML. https://developer.apple.com/documentation/createml
[21]
MakerBot Industries. [n.d.]. Thingiverse. https://www.thingiverse.com/
[22]
Yo Kato, Toshiharu Mukai, Tomonori Hayakawa, and Tetsuyoshi Shibata. 2007. Tactile Sensor without Wire and Sensing Element in the Tactile Region Based on EIT Method. Proceedings of IEEE Sensors, 792 – 795. https://doi.org/10.1109/ICSENS.2007.4388519
[23]
David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg, and Saul Greenberg. 2018. Evaluation Strategies for HCI Toolkit Research. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA, 1–17. https://doi.org/10.1145/3173574.3173610
[24]
Benyuan Liu, Bin Yang, Canhua Xu, Junying Xia, Meng Dai, Zhenyu Ji, Fusheng You, Xiuzhen Dong, Xuetao Shi, and Feng Fu. 2018. pyEIT: A python based framework for Electrical Impedance Tomography. SoftwareX 7(2018), 304 – 308. https://doi.org/10.1016/j.softx.2018.09.005
[25]
Xinfu Liu, Jinhe Liu, Zhanping Du, Quanming Zhao, Junying Zhao, and Yuhui Huang. 2008. The Research on Non-destructive Testing Method of Sheet Resistance in Micro Area of Silicon Wafer Based on EIT Technology. 1494 – 1497. https://doi.org/10.1109/IIH-MSP.2008.286
[26]
Gang Ma, Zhiliang Hao, Xuan Wu, and Xiaojie Wang. 2020. An Optimal Electrical Impedance Tomography Drive Pattern for Human-Computer Interaction Applications. IEEE Transactions on Biomedical Circuits and Systems PP (01 2020), 1–1. https://doi.org/10.1109/TBCAS.2020.2967785
[27]
MathWorks. [n.d.]. MATLAB. https://www.mathworks.com
[28]
McMaster-Carr. [n.d.]. Hardened Bearing-Quality 440C Stainless Steel Balls. https://www.mcmaster.com/catalog/127/4076
[29]
McMaster-Carr. [n.d.]. Ring Terminals. https://www.mcmaster.com/catalog/127/833
[30]
M. Michalikova and M. Prauzek. 2014. A hybrid device for electrical impedance tomography and bioelectrical impedance spectroscopy measurement. In 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE). 1–4. https://doi.org/10.1109/CCECE.2014.6900984
[31]
A. Nagakubo, H. Alirezaei, and Y. Kuniyoshi. 2007. A deformable and deformation sensitive tactile distribution sensor. In 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO). 1301–1308. https://doi.org/10.1109/ROBIO.2007.4522352
[32]
Weiyi Ning, Xuning Wang, and Yingzhu Qian. 2019. Transition to Automated: The Interaction of Activating the In-vehicle Automated Driving System. In Design, User Experience, and Usability. Application Domains, Aaron Marcus and Wentao Wang (Eds.). Springer International Publishing, Cham, 101–113.
[33]
OpenBCI. [n.d.]. EMG/ECG Snap Electrode Cables. https://shop.openbci.com/collections/frontpage/products/emg-ecg-snap-electrode-cables
[34]
Narjes Pourjafarian, Anusha Withana, Joseph A. Paradiso, and Jürgen Steimle. 2019. Multi-Touch Kit: A Do-It-Yourself Technique for Capacitive Multi-Touch Sensing Using a Commodity Microcontroller. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA, 1071–1083. https://doi.org/10.1145/3332165.3347895
[35]
A Romsauerova, A McEwan, L Horesh, R Yerworth, R H Bayford, and D S Holder. 2006. Multi-frequency electrical impedance tomography (EIT) of the adult human head: initial findings in brain tumours, arteriovenous malformations and chronic stroke, development of an analysis method and calibration. Physiological Measurement 27, 5 (apr 2006), S147–S161. https://doi.org/10.1088/0967-3334/27/5/s13
[36]
Munehiko Sato, Ivan Poupyrev, and Chris Harrison. 2012. Touché: Enhancing Touch Interaction on Humans, Screens, Liquids, and Everyday Objects. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Austin, Texas, USA) (CHI ’12). Association for Computing Machinery, New York, NY, USA, 483–492. https://doi.org/10.1145/2207676.2207743
[37]
Munehiko Sato, Rohan S. Puri, Alex Olwal, Yosuke Ushigome, Lukas Franciszkiewicz, Deepak Chandra, Ivan Poupyrev, and Ramesh Raskar. 2017. Zensei: Embedded, Multi-Electrode Bioimpedance Sensing for Implicit, Ubiquitous User Recognition. Association for Computing Machinery, New York, NY, USA, 3972–3985. https://doi.org/10.1145/3025453.3025536
[38]
Valkyrie Savage, Xiaohan Zhang, and Björn Hartmann. 2012. Midas: Fabricating Custom Capacitive Touch Sensors to Prototype Interactive Objects. In Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology(Cambridge, Massachusetts, USA) (UIST ’12). Association for Computing Machinery, New York, NY, USA, 579–588. https://doi.org/10.1145/2380116.2380189
[39]
NICOLAS VILLAR, KIEL MARK GILLEADE, DEVINA RAMDUNYELLIS, and HANS GELLERSEN. 2007. The VoodooIO Gaming Kit: A Real-Time Adaptable Gaming Controller. Comput. Entertain. 5, 3, Article 7 (July 2007), 16 pages. https://doi.org/10.1145/1316511.1316518
[40]
Guanyun Wang, Fang Qin, Haolin Liu, Ye Tao, Yang Zhang, Yongjie Jessica Zhang, and Lining Yao. 2020. MorphingCircuit: An Integrated Design, Simulation, and Fabrication Workflow for Self-Morphing Electronics. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 4, Article 157 (Dec. 2020), 26 pages. https://doi.org/10.1145/3432232
[41]
Eung Je Woo, P Hua, John Webster, W Tompkins, and Ramon Pallas-Areny. 1992. Skin impedance measurements using simple and compound electrodes. Medical & biological engineering & computing 30 (02 1992), 97–102. https://doi.org/10.1007/BF02446200
[42]
Y. Wu, D. Jiang, J. Duan, X. Liu, R. Bayford, and A. Demosthenous. 2018. Towards a High Accuracy Wearable Hand Gesture Recognition System Using EIT. In 2018 IEEE International Symposium on Circuits and Systems (ISCAS). 1–4. https://doi.org/10.1109/ISCAS.2018.8351296
[43]
Y. Wu, D. Jiang, X. Liu, R. Bayford, and A. Demosthenous. 2018. A Human–Machine Interface Using Electrical Impedance Tomography for Hand Prosthesis Control. IEEE Transactions on Biomedical Circuits and Systems 12, 6 (2018), 1322–1333. https://doi.org/10.1109/TBCAS.2018.2878395
[44]
Sang Ho Yoon, Ke Huo, Yunbo Zhang, Guiming Chen, Luis Paredes, Subramanian Chidambaram, and Karthik Ramani. 2017. ISoft: A Customizable Soft Sensor with Real-Time Continuous Contact and Stretching Sensing. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology (Québec City, QC, Canada) (UIST ’17). Association for Computing Machinery, New York, NY, USA, 665–678. https://doi.org/10.1145/3126594.3126654
[45]
Yang Zhang and Chris Harrison. 2015. Tomo: Wearable, Low-Cost Electrical Impedance Tomography for Hand Gesture Recognition. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology (Charlotte, NC, USA) (UIST ’15). Association for Computing Machinery, New York, NY, USA, 167–173. https://doi.org/10.1145/2807442.2807480
[46]
Yang Zhang, Gierad Laput, and Chris Harrison. 2017. Electrick: Low-Cost Touch Sensing Using Electric Field Tomography. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17). Association for Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3025453.3025842
[47]
Yang Zhang, Robert Xiao, and Chris Harrison. 2016. Advancing Hand Gesture Recognition with High Resolution Electrical Impedance Tomography. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (Tokyo, Japan) (UIST ’16). Association for Computing Machinery, New York, NY, USA, 843–850. https://doi.org/10.1145/2984511.2984574
[48]
Junyi Zhu, Lotta-Gili Blumberg, Yunyi Zhu, Martin Nisser, Ethan Levi Carlson, Xin Wen, Kevin Shum, Jessica Ayeley Quaye, and Stefanie Mueller. 2020. CurveBoards: Integrating Breadboards into Physical Objects to Prototype Function in the Context of Form. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. 1–13.
[49]
Junyi Zhu, Yunyi Zhu, Jiaming Cui, Leon Cheng, Jackson Snowden, Mark Chounlakone, Michael Wessely, and Stefanie Mueller. 2020. MorphSensor: A 3D Electronic Design Tool for Reforming Sensor Modules. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology.
[50]
Y Zou and Z Guo. 2003. A review of electrical impedance techniques for breast cancer detection. Medical Engineering & Physics 25, 2 (2003), 79 – 90. https://doi.org/10.1016/S1350-4533(02)00194-7

Cited By

View all
  • (2024)DEIT-Based Bone Position and Orientation Estimation for Robotic Support in Total Knee Arthroplasty—A Computational Feasibility StudySensors10.3390/s2416526924:16(5269)Online publication date: 14-Aug-2024
  • (2024)Demo of EITPose: Wearable and Practical Electrical Impedance Tomography for Continuous Hand Pose EstimationAdjunct Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology10.1145/3672539.3686770(1-3)Online publication date: 13-Oct-2024
  • (2024)SweatSkinProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36314257:4(1-30)Online publication date: 12-Jan-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
UIST '21: The 34th Annual ACM Symposium on User Interface Software and Technology
October 2021
1357 pages
ISBN:9781450386357
DOI:10.1145/3472749
This work is licensed under a Creative Commons Attribution International 4.0 License.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 12 October 2021

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. electrical impedance tomography
  2. electronic prototyping
  3. health sensing
  4. personal fabrication.

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

Conference

UIST '21

Acceptance Rates

Overall Acceptance Rate 561 of 2,567 submissions, 22%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1,330
  • Downloads (Last 6 weeks)195
Reflects downloads up to 18 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)DEIT-Based Bone Position and Orientation Estimation for Robotic Support in Total Knee Arthroplasty—A Computational Feasibility StudySensors10.3390/s2416526924:16(5269)Online publication date: 14-Aug-2024
  • (2024)Demo of EITPose: Wearable and Practical Electrical Impedance Tomography for Continuous Hand Pose EstimationAdjunct Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology10.1145/3672539.3686770(1-3)Online publication date: 13-Oct-2024
  • (2024)SweatSkinProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36314257:4(1-30)Online publication date: 12-Jan-2024
  • (2024)EITPose: Wearable and Practical Electrical Impedance Tomography for Continuous Hand Pose EstimationProceedings of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613904.3642663(1-10)Online publication date: 11-May-2024
  • (2024)Multi-Layer Electrical Impedance Tomography Based Soft Tactile Skins2024 IEEE 7th International Conference on Soft Robotics (RoboSoft)10.1109/RoboSoft60065.2024.10521981(1101-1106)Online publication date: 14-Apr-2024
  • (2024)Multi-touch Recognition of Hydrogel-based E-skins using Real-world EIT Datasets2024 IEEE 7th International Conference on Soft Robotics (RoboSoft)10.1109/RoboSoft60065.2024.10521955(103-108)Online publication date: 14-Apr-2024
  • (2024)Exploring the Real-Time Capability of Electrical Impedance Tomography for Hand Sign Recognition in Robotic Hand Control2024 IEEE International Symposium on Robotic and Sensors Environments (ROSE)10.1109/ROSE62198.2024.10591166(1-6)Online publication date: 20-Jun-2024
  • (2024)Liquids Identification and Manipulation via Digitally Fabricated Impedance Sensors2024 IEEE International Conference on Robotics and Automation (ICRA)10.1109/ICRA57147.2024.10610518(18164-18171)Online publication date: 13-May-2024
  • (2024)Depth Camera-based Monitoring and Simulation System for Weight Training Assessment2024 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO)10.1109/ARSO60199.2024.10557823(173-176)Online publication date: 20-May-2024
  • (2024)Designing and Deploying Mobile Health InterventionsHuman Computer Interaction in Healthcare10.1007/978-3-031-69947-4_12(291-316)Online publication date: 14-Nov-2024
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media