Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3469213.3469218acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicaiisConference Proceedingsconference-collections
research-article

Production2Vec: a hybrid recommender system combining semantic and product complexity approach to improve industrial resiliency

Published: 18 August 2021 Publication History

Abstract

COVID-19 health crisis highlights the fragility of European industrial strategies and leads us to develop more agile, distributed, and resilient production models at a territorial level. There are two major challenges in this regard: one is to find solutions to secure supplies and/or industrial value chains, and the other is to identify companies that have the potential to transform their production quickly to cope with an emergency situation. We extended the Word2Vec vector space with products and economic activities allowing us to calculate proximities. We present a methodology based on semantic proximity and productive complexities to assess the ability of an A-company to produce a product B and to anticipate customer/supplier-type collaboration according to industrial quality standards. We consider recommendation topics by intertwining machine learning techniques with semantic approaches, referring to area ontologies incorporating territorial dimensionality.

References

[1]
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 4171-4186. https://doi.org/10.18653/v1/N19-1423
[2]
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is All you Need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Éds.), Advances in Neural Information Processing Systems (Vol. 30). Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
[3]
Almeida, F., & Xexéo, G. (2019). Word Embeddings: A Survey. arXiv:1901.09069 [cs, stat]. http://arxiv.org/abs/1901.09069
[4]
Di Gennaro, G., Buonanno, A., Di Girolamo, A., Ospedale, A., & Palmieri, F. A. N. (2021). Intent Classification in Question-Answering Using LSTM Architectures. In A. Esposito, M. Faundez-Zanuy, F. C. Morabito, & E. Pasero (Éds.), Progresses in Artificial Intelligence and Neural Systems (p. 115-124). Springer Singapore. https://doi.org/10.1007/978-981-15-5093-5_11
[5]
Jang, B., Kim, I., & Kim, J. W. (2019). Word2vec convolutional neural networks for classification of news articles and tweets. PLOS ONE, 14(8), e0220976. https://doi.org/10.1371/journal.pone.0220976
[6]
Jianqiang, Z., Xiaolin, G., & Xuejun, Z. (2018). Deep Convolution Neural Networks for Twitter Sentiment Analysis. IEEE Access, 6, 23253-23260. https://doi.org/10.1109/ACCESS.2017.2776930
[7]
Muhammad, P. F., Kusumaningrum, R., & Wibowo, A. (2021). Sentiment Analysis Using Word2vec And Long Short-Term Memory (LSTM) For Indonesian Hotel Reviews. Procedia Computer Science, 179, 728-735. https://doi.org/10.1016/j.procs.2021.01.061
[8]
Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2003). A Neural Probabilistic Language Model. J. Mach. Learn. Res., 3(null), 1137–1155.
[9]
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural Language Processing (almost) from Scratch. ArXiv:1103.0398 [Cs]. http://arxiv.org/abs/1103.0398
[10]
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. ArXiv:1301.3781 [Cs]. http://arxiv.org/abs/1301.3781
[11]
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. ArXiv:1310.4546 [Cs, Stat]. http://arxiv.org/abs/1310.4546
[12]
Mikolov, T., Le, Q. V., & Sutskever, I. (2013). Exploiting Similarities among Languages for Machine Translation. ArXiv:1309.4168 [Cs]. http://arxiv.org/abs/1309.4168
[13]
Sultan, M. A., Bethard, S., & Sumner, T. (2015). DLS$@$CU: Sentence Similarity from Word Alignment and Semantic Vector Composition. Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), 148–153. https://doi.org/10.18653/v1/S15-2027
[14]
sKim, S., Park, H., & Lee, J. (2020). Word2vec-based latent semantic analysis (W2V-LSA) for topic modeling: A study on blockchain technology trend analysis. Expert Systems with Applications, 152, 113401. https://doi.org/10.1016/j.eswa.2020.113401
[15]
Zhang, Y.-F., Wang, X., Kaushik, A. C., Chu, Y., Shan, X., Zhao, M.-Z., Xu, Q., & Wei, D.-Q. (2020). SPVec: A Word2vec-Inspired Feature Representation Method for Drug-Target Interaction Prediction. Frontiers in Chemistry, 7, 895. https://doi.org/10.3389/fchem.2019.00895
[16]
van Capelleveen, G., Amrit, C., Zijm, H., Yazan, D. M., & Abdi, A. (2021). Toward building recommender systems for the circular economy: Exploring the perils of the European Waste Catalogue. Journal of Environmental Management, 277, 111430. https://doi.org/10.1016/j.jenvman.2020.111430
[17]
Eljasik-Swoboda, T., Hemmje, M., Dascalu, M., & Trausan-Matu, S. (2016). Combining Taxonomies using Word2vec. 131–134. https://doi.org/10.1145/2960811.2967151
[18]
Baek, J.-W., & Chung, K.-Y. (2020). Multimedia recommendation using Word2Vec-based social relationship mining. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-019-08607-9
[19]
Esmeli, R., Bader-El-Den, M., & Abdullahi, H. (2020). Using Word2Vec Recommendation for Improved Purchase Prediction. 2020 International Joint Conference on Neural Networks (IJCNN), 1–8. https://doi.org/10.1109/IJCNN48605.2020.9206871
[20]
Morin, F., & Bengio, Y. (2005). Hierarchical Probabilistic Neural Network Language Model. AISTATS.
[21]
Fraccascia, L., Giannoccaro, I., & Albino, V. (2018). Resilience of Complex Systems: State of the Art and Directions for Future Research. Complexity, 2018, 1–44. https://doi.org/10.1155/2018/3421529
[22]
Sheffi, Y., & Rice, J., Jr. (2005). A Supply Chain View of the Resilient Enterprise. MIT Sloan Management Review, 47.
[23]
Hidalgo, C. A., & Hausmann, R. (2009). The building blocks of economic complexity. Proceedings of the National Academy of Sciences, 106(26), 10570–10575. https://doi.org/10.1073/pnas.0900943106
[24]
Hausmann, R., & Hidalgo, C. (2010). Country Diversification, Product Ubiquity, and Economic Divergence. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1724722
[25]
Hausmann, R., Hidalgo, C. A., & Bustos, S. (2013). The atlas of economic complexity: Mapping paths to prosperity. The MIT Press.
[26]
University, T. G. L. A. H. (2019). Product Space Networks [Data set]. Harvard Dataverse. https://doi.org/10.7910/DVN/FCDZBN

Cited By

View all
  • (2024)Product Space Clustering with Graph Learning for Diversifying Industrial ProductionApplied Sciences10.3390/app1407283314:7(2833)Online publication date: 27-Mar-2024
  • (2023)RETRACTED ARTICLE: AHI: a hybrid machine learning model for complex industrial information systemsJournal of Combinatorial Optimization10.1007/s10878-023-00988-w45:2Online publication date: 23-Jan-2023

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
ICAIIS 2021: 2021 2nd International Conference on Artificial Intelligence and Information Systems
May 2021
2053 pages
ISBN:9781450390200
DOI:10.1145/3469213
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 18 August 2021

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

ICAIIS 2021

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)11
  • Downloads (Last 6 weeks)1
Reflects downloads up to 22 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Product Space Clustering with Graph Learning for Diversifying Industrial ProductionApplied Sciences10.3390/app1407283314:7(2833)Online publication date: 27-Mar-2024
  • (2023)RETRACTED ARTICLE: AHI: a hybrid machine learning model for complex industrial information systemsJournal of Combinatorial Optimization10.1007/s10878-023-00988-w45:2Online publication date: 23-Jan-2023

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media