Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3468791.3468815acmotherconferencesArticle/Chapter ViewAbstractPublication PagesssdbmConference Proceedingsconference-collections
short-paper

WBSum: Workload-based Summaries for RDF/S KBs

Published: 11 August 2021 Publication History

Abstract

Semantic summaries try to extract compact information from the original RDF graph, while reducing its size. State of the art structural semantic summaries, focus primarily on the graph structure of the data, trying to maximize the summary’s utility for a specific purpose, such as indexing, query answering and source selection. In this paper, we present an approach that is able to construct high quality summaries, exploiting a small part of the query workload, maximizing their utility for query answering, i.e. the query coverage. We demonstrate our approach using two real world datasets and the corresponding query workloads and we show that we strictly dominates current state of the art in terms of query coverage.

References

[1]
Giannis Agathangelos, Georgia Troullinou, Haridimos Kondylakis, Kostas Stefanidis, and Dimitris Plexousakis. 2018. RDF Query Answering Using Apache Spark: Review and Assessment. In 34th IEEE International Conference on Data Engineering Workshops, ICDE Workshops 2018, Paris, France, April 16-20, 2018. IEEE Computer Society, 54–59.
[2]
Sejla Cebiric, François Goasdoué, Haridimos Kondylakis, Dimitris Kotzinos, Ioana Manolescu, Georgia Troullinou, and Mussab Zneika. 2019. Summarizing semantic graphs: a survey. VLDB J. 28, 3 (2019), 295–327.
[3]
Kleber Xavier Sampaio de Souza, Adriana D. dos Santos, and Silvio R. M. Evangelista. 2003. Visualization of ontologies through hypertrees. In CLIHC.
[4]
Nikos Kardoulakis, Kenza Kellou-Menouer, Georgia Troullinou, Zoubida Kedad, Dimitris Plexousakis, and Haridimos Kondylakis. 2021. Hint Hybrid and Incremental Type Discovery for Large RDF Data Sources. ACM SSDBM.
[5]
Kenza Kellou-Menouer and Zoubida Kedad. 2020. SchemaDecrypt++: Parallel on-line Versioned Schema Inference for Large Semantic Web Data sources. Inf. Syst. 93(2020), 101551.
[6]
Haridimos Kondylakis, Melidoni Despoina, Georgios Glykokokalos, Eleftherios Kalykakis, Manos Karapiperakis, Michail-Angelos Lasithiotakis, John Makridis, Panagiotis Moraitis, Aspasia Panteri, Maria Plevraki, Antonios Providakis, Maria Skalidaki, Athanasiadis Stefanos, Manolis Tampouratzis, Eleftherios Trivizakis, Fanis Zervakis, Ekaterini Zervouraki, and Nikos Papadakis. 2017. EvoRDF: A Framework for Exploring Ontology Evolution. In The Semantic Web: ESWC 2017 Satellite Events - ESWC 2017 Satellite Events, Portorož, Slovenia, May 28 - June 1, 2017, Revised Selected Papers(Lecture Notes in Computer Science, Vol. 10577). Springer, 104–108.
[7]
Haridimos Kondylakis, Dimitris Kotzinos, and Ioana Manolescu. 2019. RDF graph summarization: principles, techniques and applications. In EDBT. 433–436.
[8]
Haridimos Kondylakis and Dimitris Plexousakis. 2011. Ontology Evolution in Data Integration: Query Rewriting to the Rescue. In Conceptual Modeling - ER 2011, 30th International Conference, ER 2011, Brussels, Belgium, October 31 - November 3, 2011. Proceedings(Lecture Notes in Computer Science, Vol. 6998). Springer, 393–401.
[9]
Haridimos Kondylakis and Dimitris Plexousakis. 2012. Ontology Evolution: Assisting Query Migration. In Conceptual Modeling - 31st International Conference ER 2012, Florence, Italy, October 15-18, 2012. Proceedings(Lecture Notes in Computer Science, Vol. 7532). Springer, 331–344.
[10]
Alexandros Pappas, Georgia Troullinou, Giannis Roussakis, Haridimos Kondylakis, and Dimitris Plexousakis. 2017. Exploring Importance Measures for Summarizing RDF/S KBs. In ESWC.
[11]
Muhammad Saleem, Qaiser Mehmood, and Axel-Cyrille Ngonga Ngomo. 2015. FEASIBLE: A Feature-Based SPARQL Benchmark Generation Framework. In ISWC. 52–69.
[12]
Peroni Silvio, Motta Enrico, and d’Aquin Mathieu. 2008. Identifying key concepts in an ontology, through the integration of cognitive principles with statistical and topological measures. In ASWC. 242–256.
[13]
Georgia Troullinou, Haridimos Kondylakis, Evangelia Daskalaki, and Dimitris Plexousakis. 2017. Ontology understanding without tears: The summarization approach. Semantic Web 8, 6 (2017), 797–815.
[14]
Georgia Troullinou, Haridimos Kondylakis, Matteo Lissandrini, and Davide Mottin. 2021. SOFOS: Demonstrating the Challenges of Materialized View Selection on Knowledge Graphs. ACM SIGMOD.
[15]
Georgia Troullinou, Haridimos Kondylakis, Kostas Stefanidis, and Dimitris Plexousakis. 2018. Exploring RDFS KBs Using Summaries. In ISWC. 268–284.
[16]
Stefan Voß. 1992. Steiner’s Problem in Graphs: Heuristic Methods. Discrete Applied Mathematics 40, 1 (1992), 45–72.
[17]
Gang Wu, Juanzi Li, Ling Feng, and Kehong Wang. 2008. Identifying potentially important concepts and relations in an ontology. In ISWC. 33–49.
[18]
Xiang Zhang, Gong Cheng, and Yuzhong Qu. 2007. Ontology summarization based on rdf sentence graph. In WWW.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
SSDBM '21: Proceedings of the 33rd International Conference on Scientific and Statistical Database Management
July 2021
275 pages
ISBN:9781450384131
DOI:10.1145/3468791
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 August 2021

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. RDF/S
  2. Semantic Summaries
  3. Workload

Qualifiers

  • Short-paper
  • Research
  • Refereed limited

Funding Sources

  • Hellenic Foundation for Research and Innovation (H.F.R.I.)

Conference

SSDBM 2021

Acceptance Rates

Overall Acceptance Rate 56 of 146 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)13
  • Downloads (Last 6 weeks)0
Reflects downloads up to 26 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Constructing Semantic Summaries Using EmbeddingsInformation10.3390/info1504023815:4(238)Online publication date: 20-Apr-2024
  • (2023)SummaryGPT: Leveraging ChatGPT for Summarizing Knowledge GraphsThe Semantic Web: ESWC 2023 Satellite Events10.1007/978-3-031-43458-7_31(164-168)Online publication date: 21-Oct-2023
  • (2023)iSummary: Workload-Based, Personalized Summaries for Knowledge GraphsThe Semantic Web10.1007/978-3-031-33455-9_12(192-208)Online publication date: 28-May-2023
  • (2021)A survey on semantic schema discoveryThe VLDB Journal — The International Journal on Very Large Data Bases10.1007/s00778-021-00717-x31:4(675-710)Online publication date: 27-Nov-2021

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media