Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3458817.3476198acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article
Open access

PAGANI: a parallel adaptive GPU algorithm for numerical integration

Published: 13 November 2021 Publication History

Abstract

We present a new adaptive parallel algorithm for the challenging problem of multi-dimensional numerical integration on massively parallel architectures. Adaptive algorithms have demonstrated the best performance, but efficient many-core utilization is difficult to achieve because the adaptive work-load can vary greatly across the integration space and is impossible to predict a priori. Existing parallel algorithms utilize sequential computations on independent processors, which results in bottlenecks due to the need for data redistribution and processor synchronization. Our algorithm employs a high-throughput approach in which all existing sub-regions are processed and sub-divided in parallel. Repeated sub-region classification and filtering improves upon a brute-force approach and allows the algorithm to make efficient use of computation and memory resources. A CUDA implementation shows orders of magnitude speedup over the fastest open-source CPU method and extends the achievable accuracy for difficult integrands. Our algorithm typically outperforms other existing deterministic parallel methods.

Supplementary Material

MP4 File (PAGANI A Parallel Adaptive GPU Algorithm for Numerical Integration.mp4)
Presentation video

References

[1]
Pierre L'Ecuyer. Quasi-monte carlo methods with applications in finance. Finance and Stochastics, 13:307--349, 09 2009.
[2]
Wojciech Jarosz. Efficient Monte Carlo Methods for Light Transport in Scattering Media. PhD thesis, UC San Diego, September 2008.
[3]
J. Zuntz, M. Paterno, E. Jennings, D. Rudd, A. Manzotti, S. Dodelson, S. Bridle, S. Sehrish, and J. Kowalkowski. Cosmosis: Modular cosmological parameter estimation. Astronomy and Computing, 12:45--59, 2015.
[4]
Kamesh Arumugam, Desh Ranjan, Mohammad Zubair, Alexander Godunov, and Balša Terzić. High-fidelity simulation of collective effects in electron beams using an innovative parallel method. In Proceedings of the Conference on Summer Computer Simulation, SummerSim '15, page 1--10, San Diego, CA, USA, 2015. Society for Computer Simulation International.
[5]
G. Peter Lepage. VEGAS: AN ADAPTIVE MULTIDIMENSIONAL INTEGRATION PROGRAM. 3 1980.
[6]
Jarle Berntsen, Terje O. Espelid, and Alan Genz. Algorithm 698: Dcuhre: An adaptive multidemensional integration routine for a vector of integrals. ACM Trans. Math. Softw., 17(4):452--456, December 1991.
[7]
T. Hahn. Cuba-a library for multidimensional numerical integration. Computer Physics Communications, 168(2):78--95, 2005.
[8]
Paul van Dooren and Luc de Ridder. An adaptive algorithm for numerical integration over an n-dimensional cube. Journal of Computational and Applied Mathematics, 2(3):207--217, 1976.
[9]
J. Berntsen and T. O. Espelid. An adaptive multidimensional integration routine for a vector of integrals. ACM Transactions on Mathematical Software, 1991.
[10]
R. Piessens, E. de Doncker-Kapenga, C.W. Überhuber, and D.K. Kahaner. Quad-pack: A Subroutine Package for Automatic Integration. Springer Series in Computational Mathematics. Springer Berlin Heidelberg, 2012.
[11]
The NAG Library. The Numerical Algorithms Group (NAG), www.nag.com.
[12]
K. Arumugam, A. Godunov, D. Ranjan, B. Terzic, and M. Zubair. An efficient deterministic parallel algorithm for adaptive multidimensional numerical integration on gpus. In 2013 42nd International Conference on Parallel Processing, pages 486--491, 2013.
[13]
Jarle Berntsen, Terje Espelid, and Alan Genz. An adaptive algorithm for the approximate calculation of multiple integrals. ACM Transactions on Mathematical Software, 17:437--451, 12 1991.
[14]
T. Hahn. Concurrent cuba, 2014.
[15]
K. Arumugam, A. Godunov, D. Ranjan, B. Terzić, and M. Zubair. A memory efficient algorithm for adaptive multidimensional integration with multiple gpus. In 20th Annual International Conference on High Performance Computing, pages 169--175, 2013.
[16]
Michael Griebel Hans-Joachim Bungartz. Sparse grids. Acta Numerica, 13:147--269, 6 2004.
[17]
Michael Griebel and Jens Oettershagen. Dimension-adaptive sparse grid quadrature for integrals with boundary singularities. In Jochen Garcke and Dirk Pflüger, editors, Sparse Grids and Applications - Munich 2012, pages 109--136, Cham, 2014. Springer International Publishing.
[18]
Hans-Joachim Bungartz and Stefan Dirnstorfer. Multivariate quadrature on adaptive sparse grids. Computing, 71(1):89--114, September 2003.
[19]
Thomas Gerstner and Michael Griebel. Numerical integration using sparse grids. Numerical Algorithms, 18(3):209--232, January 1998.
[20]
T. Goda and K. Suzuki. Recent advances in higher order quasi-monte carlo methods. arXiv: Numerical Analysis, 2019.
[21]
Dirk Nuyens and Ronald Cools. Higher order quasi-monte carlo methods: A comparison. AIP Conference Proceedings, 1281(1):553--557, 2010.
[22]
Russel E. Caflisch. Monte carlo and quasi-monte carlo methods. Acta Numerica, 7:1--49, January 1998.
[23]
A. C. Genz and A. A. Malik. An imbedded family of fully symmetric numerical integration rules. SIAM journal on numerical analysis, 20(3):580--588, 1983.
[24]
J. Berntsen. Practical error estimation in adaptive multidimensional quadrature routines. J. Comput. Appl. Math., 25(3):327--340, May 1989.
[25]
Daniel Thuerck, Sven Widmer, Arjan Kuijper, and Michael Goesele. Efficient heuristic adaptive quadrature on gpus: Design and evaluation. In Roman Wyrzykowski, Jack Dongarra, Konrad Karczewski, and Jerzy Waśniewski, editors, Parallel Processing and Applied Mathematics, pages 652--662, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.
[26]
Giuliano Laccetti, Marco Lapegna, Valeria Mele, and Diego Romano. A study on adaptive algorithms for numerical quadrature on heterogeneous gpu and multicore based systems. In Roman Wyrzykowski, Jack Dongarra, Konrad Karczewski, and Jerzy Waśniewski, editors, Parallel Processing and Applied Mathematics, pages 704--713, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.
[27]
S. Borowka, G. Heinrich, S. Jahn, S.P. Jones, M. Kerner, and J. Schlenk. A gpu compatible quasi-monte carlo integrator interfaced to pysecdec. Computer Physics Communications, 240:120--137, Jul 2019.
[28]
Alan Genz. Testing multidimensional integration routines. In Proc. of International Conference on Tools, Methods and Languages for Scientific and Engineering Computation, page 81--94, USA, 1984. Elsevier North-Holland, Inc.
[29]
Nathan Bell and Jared Hoberock. Chapter 26 - thrust: A productivity-oriented library for cuda. In Wen mei W. Hwu, editor, GPU Computing Gems Jade Edition, Applications of GPU Computing Series, pages 359--371. Morgan Kaufmann, Boston, 2012.

Cited By

View all
  • (2023)Enabling Efficient Random Access to Hierarchically Compressed Text Data on Diverse GPU PlatformsIEEE Transactions on Parallel and Distributed Systems10.1109/TPDS.2023.329434134:10(2699-2717)Online publication date: 1-Oct-2023
  • (2023)Porting Numerical Integration Codes from CUDA to oneAPI: A Case StudyHigh Performance Computing10.1007/978-3-031-32041-5_18(339-358)Online publication date: 21-May-2023
  • (2022)Optimizing Random Access to Hierarchically-Compressed Data on GPUSC22: International Conference for High Performance Computing, Networking, Storage and Analysis10.1109/SC41404.2022.00023(1-15)Online publication date: Nov-2022
  • Show More Cited By

Index Terms

  1. PAGANI: a parallel adaptive GPU algorithm for numerical integration

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SC '21: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
    November 2021
    1493 pages
    ISBN:9781450384421
    DOI:10.1145/3458817
    © 2021 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of the United States government. As such, the United States Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

    Sponsors

    In-Cooperation

    • IEEE CS

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 13 November 2021

    Permissions

    Request permissions for this article.

    Check for updates

    Badges

    Author Tags

    1. adaptive
    2. deterministic
    3. integration
    4. multi-dimensional

    Qualifiers

    • Research-article

    Conference

    SC '21
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 1,516 of 6,373 submissions, 24%

    Upcoming Conference

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)129
    • Downloads (Last 6 weeks)25
    Reflects downloads up to 16 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Enabling Efficient Random Access to Hierarchically Compressed Text Data on Diverse GPU PlatformsIEEE Transactions on Parallel and Distributed Systems10.1109/TPDS.2023.329434134:10(2699-2717)Online publication date: 1-Oct-2023
    • (2023)Porting Numerical Integration Codes from CUDA to oneAPI: A Case StudyHigh Performance Computing10.1007/978-3-031-32041-5_18(339-358)Online publication date: 21-May-2023
    • (2022)Optimizing Random Access to Hierarchically-Compressed Data on GPUSC22: International Conference for High Performance Computing, Networking, Storage and Analysis10.1109/SC41404.2022.00023(1-15)Online publication date: Nov-2022
    • (2022)m-Cubes: An Efficient and Portable Implementation of Multi-dimensional Integration for GPUsHigh Performance Computing10.1007/978-3-031-07312-0_10(192-209)Online publication date: 29-May-2022

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media