Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3458817.3476173acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article
Open access

3D acoustic-elastic coupling with gravity: the dynamics of the 2018 Palu, Sulawesi earthquake and tsunami

Published: 13 November 2021 Publication History

Abstract

We present a highly scalable 3D fully-coupled Earth & ocean model of earthquake rupture and tsunami generation and perform the first fully coupled simulation of an actual earthquake-tsunami event and a 3D benchmark problem of tsunami generation by a megathrust dynamic earthquake rupture. Multi-petascale simulations, with excellent performance demonstrated on three different platforms, allow high-resolution forward modeling. Our largest mesh has ≈261 billion degrees of freedom, resolving at least 15 Hz of the acoustic wave field. We self-consistently model seismic, acoustic and surface gravity wave propagation in elastic (Earth) and acoustic (ocean) materials sourced by physics-based non-linear earthquake dynamic rupture, thereby gaining insight into the tsunami generation process without relying on approximations that have previously been applied to permit solution of this challenging problem. Complicated geometries, including high-resolution bathymetry, coastlines and segmented earthquake faults are discretized by adaptive unstructured tetrahedral meshes. This inevitably leads to large differences in element sizes and wave speeds which can be mitigated by ADER local time-stepping and a Discontinuous Galerkin discretization yielding high-order accuracy in time and space.

Supplementary Material

MP4 File (3D Acoustic-Elastic Coupling with Gravity_ The Dynamics of the 2018 Palu, Sulawesi Earthquake and Tsunami.mp4)
Presentation video

References

[1]
Lauren S. Abrahams, Eric M. Dunham, Lukas Krenz, Tatsuhiko Saito, and Alice-Agnes Gabriel. 2021. Comparison of techniques for coupled earthquake and tsunami modeling. Earth and Space Sci. Open Arch. (Feb. 2021), 49. AGU 2020 Fall Meeting.
[2]
Lauren S Abrahams, Lukas Krenz, Eric M Dunham, and Alice-Agnes Gabriel. 2019. Verification of a 3D fully-coupled earthquake and tsunami model. In AGU Fall Meet. Abstr., Vol. 2019. NH43F-1000. https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/547532
[3]
D. J. Andrews. 1976. Rupture velocity of plane strain shear cracks. J. Geophys. Res. 81, 32 (nov 1976), 5679--5687.
[4]
Sara Aniko Wirp, Alice-Agnes Gabriel, Maximilian Schmeller, Elizabeth H. Madden, Iris van Zelst, Lukas Krenz, Ylona van Dinther, and Leonhard Rannabauer. 2021. 3D Linked Subduction, Dynamic Rupture, Tsunami, and Inundation Modeling: Dynamic Effects of Supershear and Tsunami Earthquakes, Hypocenter Location, and Shallow Fault Slip. Front. in Earth Sci. 9 (2021), 177.
[5]
Marsha J. Berger, David L. George, Randall J. LeVeque, and Kyle T. Mandli. 2011. The GeoClaw software for depth-averaged flows with adaptive refinement. Adv. Water. Res. 34, 9 (2011), 1195--1206.
[6]
Alexander Breuer, Alexander Heinecke, and Michael Bader. 2016. Petascale Local Time Stepping for the ADER-DG Finite Element Method. In 2016 IEEE Int. Parallel Distrib. Process. Symp. (IPDPS). 854--863.
[7]
Bingwei Chen, Haohuan Fu, Yanwen Wei, Conghui He, Wenqiang Zhang, Yuxuan Li, Wubin Wan, Wei Zhang, Lin Gan, Wei Zhang, Zhenguo Zhang, Guangwen Yang, and Xiaofei Chen. 2018. Simulating the Wenchuan Earthquake with Accurate Surface Topography on Sunway TaihuLight. In Proc. of the Int. Conf. High Perform. Comput., Networking, Storage, and Analysis (Dallas, Texas) (SC '18). Article 40.
[8]
Richard Courant, Kurt Friedrichs, and Hans Lewy. 1928. Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100, 1 (1928), 32--74.
[9]
DEMNAS 2018. DEMNAS - Seamless Digital Elevation Model (DEM) dan Batimetri Nasional. Badan Informasi Geospasial. http://tides.big.go.id/DEMNAS
[10]
Michael Dumbser, Dinshaw S. Balsara, Eleuterio F. Toro, and Claus-Dieter Munz. 2008. A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227, 18 (Sept. 2008), 8209--8253.
[11]
Michael Dumbser and Martin Käser. 2006. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - II. The three-dimensional isotropic case. Geophys. J. Int. 167, 1 (Oct. 2006), 319--336.
[12]
Michael Dumbser, Martin Käser, and Eleuterio F. Toro. 2007. An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes - V. Local time stepping and p-adaptivity. Geophys. J. Int. 171, 2 (Nov. 2007), 695--717.
[13]
M. Dumbser, T. Schwartzkopff, and C.-D. Munz. 2006. Arbitrary High Order Finite Volume Schemes for Linear Wave Propagation. In Comput. Sci. and High Perform. Comput. II (Notes on Numer. Fluid Mech. and Multidisci. Design). Springer, Berlin, Heidelberg, 129--144.
[14]
Ahmed Elbanna, Mohamed Abdelmeguid, Xiao Ma, Faisal Amlani, Harsha S. Bhat, Costas Synolakis, and Ares J. Rosakis. 2021. Anatomy of strike-slip fault tsunami genesis. Proc. of the Natl. Acad. Sci. 118, 19 (2021).
[15]
Haohuan Fu, Conghui He, Bingwei Chen, Zekun Yin, Zhenguo Zhang, Wenqiang Zhang, Tingjian Zhang, Wei Xue, Weiguo Liu, Wanwang Yin, Guangwen Yang, and Xiaofei Chen. 2017. 18.9-pflops nonlinear earthquake simulation on Sunway TaihuLight: enabling depiction of 18-Hz and 8-meter scenarios. In Proc. Int. Conf. High Perform. Comput., Networking, Storage and Analysis (Denver, Colorado) (SC '17). Association for Computing Machinery, New York, NY, USA, Article 2, 12 pages.
[16]
Ruth A. Harris, Michael Barall, Brad Aagaard, Shuo Ma, Daniel Roten, Kim Olsen, Benchun Duan, Dunyu Liu, Bin Luo, Kangchen Bai, Jean-Paul Ampuero, Yoshihiro Kaneko, Alice-Agnes Gabriel, Kenneth Duru, Thomas Ulrich, Stephanie Wollherr, Zheqiang Shi, Eric Dunham, Sam Bydlon, Zhenguo Zhang, Xiaofei Chen, Surendra Nadh Somala, Christian Pelties, Josué Tago, Victor Manuel Cruz-Atienza, Jeremy Kozdon, Eric Daub, Khurram Aslam, Yuko Kase, Kyle Withers, and Luis Dalguer. 2018. A Suite of Exercises for Verifying Dynamic Earthquake Rupture Codes. Seismol. Res. Lett. 89, 3 (May 2018), 1146--1162.
[17]
Alexander Heinecke, Alexander Breuer, Sebastian Rettenberger, Michael Bader, Alice-Agnes Gabriel, Christian Pelties, Arndt Bode, William Barth, Xiang-Ke Liao, Karthikeyan Vaidyanathan, Mikhail Smelyanskiy, and Pradeep Dubey. 2014. Petascale High Order Dynamic Rupture Earthquake Simulations on Heterogeneous Supercomputers. In SC '14: Proc. Int. Conf. High Perform. Comp., Networking, Storage and Analysis. 3--14. ISSN: 2167-4337.
[18]
Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans Pabst. 2016. LIBXSMM: accelerating small matrix multiplications by runtime code generation. In SC'16: Proc. Int. Conf. High Perform. Comput., Networking, Storage and Analysis. IEEE, 981--991.
[19]
Torsten Hoefler and Andrew Lumsdaine. 2008. Message progression in parallel computing - to thread or not to thread?. In 2008 IEEE Int. Conf. Cluster Comp. 213--222.
[20]
Tsuyoshi Ichimura, Kohei Fujita, Seizo Tanaka, Muneo Hori, Maddegedara Lalith, Yoshihisa Shizawa, and Hiroshi Kobayashi. 2014. Physics-Based Urban Earthquake Simulation Enhanced by 10.7 BlnDOF × 30 K Time-Step Unstructured FE Non-Linear Seismic Wave Simulation. In Proc. Int. Conf. High Perform. Comput., Networking, Storage and Analysis (SC '14). 15--26.
[21]
Tsuyoshi Ichimura, Kohei Fujita, Takuma Yamaguchi, Akira Naruse, Jack C. Wells, Thomas C. Schulthess, Tjerk P. Straatsma, Christopher J. Zimmer, Maxime Martinasso, Kengo Nakajima, Muneo Hori, and Lalith Maddegedara. 2018. A fast scalable implicit solver for nonlinear time-evolution earthquake city problem on low-ordered unstructured finite elements with artificial intelligence and transprecision computing. In SC18: Int. Conf. High Perform. Comput., Networking, Storage and Analysis. IEEE, 627--637.
[22]
Kinjiro Kajiura. 1963. The leading wave of a tsunami. Bull. Earthquake Res. Inst., University of Tokyo 41, 3 (1963), 535--571.
[23]
Martin Käser and Michael Dumbser. 2006. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms. Geophysical J. Int. 166, 2 (Aug 2006), 855--877.
[24]
Jannis Klinkenberg, Philipp Samfass, Michael Bader, Christian Terboven, and Matthias S. Müller. 2020. Reactive task migration for hybrid MPI + OpenMP applications. In Parallel Proc. and Appl. Math. Springer International Publishing, 59--71.
[25]
Dimitri Komatitsch. 2011. Fluid-solid coupling on a cluster of GPU graphics cards for seismic wave propagation. Comptes Rendus Mécanique 339, 2--3 (2011), 125--135.
[26]
Jeremy E. Kozdon and Eric M. Dunham. 2014. Constraining shallow slip and tsunami excitation in megathrust ruptures using seismic and ocean acoustic waves recorded on ocean-bottom sensor networks. Earth Planet. Sci. Lett. 396 (2014), 56--65.
[27]
Lukas Krenz, Carsten Uphoff, Lauren S Abrahams, Alice-Agnes Gabriel, Eric M Dunham, and Michael Bader. 2019. Elastic-acoustic coupling for 3D tsunamigenic earthquake simulations with ADER-DG on unstructured tetrahedral meshes. In AGU Fall Meet. Abstr., Vol. 2019. T52C-09.
[28]
Martin Käser, Michael Dumbser, Josep De La Puente, and Heiner Igel. 2007. An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes - III. Viscoelastic attenuation. Geophys. J. Int. 168, 1 (01 2007), 224--242.
[29]
Martin Käser, Verena Hermann, and Josep de la Puente. 2008. Quantitative accuracy analysis of the discontinuous Galerkin method for seismic wave propagation. Geophys. J. Int. 173, 3 (June 2008), 990--999.
[30]
Randall J. LeVeque. 2002. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.
[31]
Chao Liang and Eric M Dunham. 2020. Lava lake sloshing modes during the 2018 Kīlauea Volcano eruption probe magma reservoir storativity. Earth Planet. Sci. Lett. 535 (2020), 116110.
[32]
Gabriel C. Lotto and Eric M. Dunham. 2015. High-order finite difference modeling of tsunami generation in a compressible ocean from offshore earthquakes. Comput. Geosci. 19, 2 (2015), 327--340.
[33]
Gabriel C. Lotto, Tamara N. Jeppson, and Eric M. Dunham. 2019. Fully coupled simulations of megathrust earthquakes and tsunamis in the Japan Trench, Nankai Trough, and Cascadia Subduction Zone. Pure Appl. Geophys. 176, 9 (2019), 4009--4041.
[34]
Gabriel C. Lotto, Gabriel Nava, and Eric M. Dunham. 2017. Should tsunami simulations include a nonzero initial horizontal velocity? Earth Planets Space 69, 1 (Dec. 2017), 117.
[35]
E. H. Madden, M. Bader, J. Behrens, Y. van Dinther, A.-A. Gabriel, L. Rannabauer, T. Ulrich, C. Uphoff, S. Vater, and I. van Zelst. 2021. Linked 3-D modelling of megathrust earthquake-tsunami events: from subduction to tsunami run up. Geophys. J. Int. 224, 1 (2021), 487--516.
[36]
Takuto Maeda, Takashi Furumura, Shinako Noguchi, Shunsuke Takemura, Shin'ichi Sakai, Masanao Shinohara, Kazuhisa Iwai, and Shiann Jong Lee. 2013. Seismic- and Tsunami-wave propagation of the 2011 Off the Pacific Coast of Tohoku earthquake as inferred from the Tsunami-coupled finite-difference simulation. Bull. Seismol. Soc. Am. 103, 2 B (may 2013), 1456--1472.
[37]
P. Martin Mai. 2019. Supershear tsunami disaster. Nat. Geosci. 12, 3 (March 2019), 150--151.
[38]
John D. McCalpin. 2018. HPL and DGEMM performance variability on the Xeon Platinum 8160 Processor. In Proc. of the Int. Conf. High Perform. Comput., Networking, Storage, and Analysis (SC '18).
[39]
Kevin R. Milner, Bruce E. Shaw, Christine A. Goulet, Keith B. Richards-Dinger, Scott Callaghan, Thomas H. Jordan, James H. Dieterich, and Edward H. Field. 2021. Toward Physics-Based Nonergodic PSHA: A Prototype Fully Deterministic Seismic Hazard Model for Southern California. Bull. Seismol. Soc. Am. 111, 2 (01 2021), 898--915.
[40]
Yoshimitsu Okada. 1985. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 75, 4 (Aug. 1985), 1135--1154.
[41]
C. Pelties, A.-A. Gabriel, and J.-P. Ampuero. 2014. Verification of an ADER-DG method for complex dynamic rupture problems. Geosci. Model Dev. 7, 3 (2014), 847--866.
[42]
Sebastian Rettenberger and Michael Bader. 2015. Optimizing I/O for petascale seismic simulations on unstructured meshes. In 2015 IEEE Int. Conf. Cluster Comp. IEEE, 314--317.
[43]
Max Rietmann, Marcus Grote, Daniel Peter, and Olaf Schenk. 2017. Newmark local time stepping on high-performance computing architectures. J. Comput. Phys. 334 (2017), 308--326.
[44]
Max Rietmann, Daniel Peter, Olaf Schenk, Bora Uçar, and Marcus Grote. 2015. Load-balanced local time stepping for large-scale wave propagation. In 2015 IEEE Int. Parallel and Distrib. Process. Symp. IEEE, 925--935.
[45]
Arthur J. Rodgers, Arben Pitarka, Ramesh Pankajakshan, Bjorn Sjögreen, and N. Anders Petersson. 2020. Regional-Scale 3D Ground-Motion Simulations of Mw7 Earthquakes on the Hayward Fault, Northern California Resolving Frequencies 0--10 Hz and Including Site-Response Corrections. Bull. Seismol. Soc. Am. 110, 6 (2020), 2862--2881.
[46]
Arthur J. Rodgers, Arben Pitarka, N. Anders Petersson, Björn Sjögreen, and David B. McCallen. 2018. Broadband (0--4 Hz) Ground Motions for a Magnitude 7.0 Hayward Fault Earthquake With Three-Dimensional Structure and Topography. Geophys. Res. Lett. 45, 2 (2018), 739--747.
[47]
Julien Diaz Ronan Madec, Dimitri Komatitsch. 2009. Energy-conserving local time stepping based on high-order finite elements for seismic wave propagation across a fluid-solid interface. Comp. Model. in Eng. & Sci. 49, 2 (2009), 163--190.
[48]
Eric Rosenkrantz, Alexis Bottero, Dimitri Komatitsch, and Vadim Monteiller. 2019. A flexible numerical approach for non-destructive ultrasonic testing based on a time-domain spectral-element method: Ultrasonic modeling of Lamb waves in immersed defective structures and of bulk waves in damaged anisotropic materials. NDT & E International 101 (2019), 72--86.
[49]
Daniel Roten, Yifeng Cui, Kim B Olsen, Steven M Day, Kyle Withers, William H Savran, Peng Wang, and Dawei Mu. 2016. High-frequency nonlinear earthquake simulations on petascale heterogeneous supercomputers. In SC'16: Proc. Int. Conf. High Perform. Comput., Networking, Storage and Analysis. IEEE, 957--968.
[50]
Tatsuhiko Saito, Toshitaka Baba, Daisuke Inazu, Shunsuke Takemura, and Eiichi Fukuyama. 2019. Synthesizing sea surface height change including seismic waves and tsunami using a dynamic rupture scenario of anticipated Nankai trough earthquakes. Tectonophys. (2019), 228166.
[51]
Kirk Schloegel, George Karypis, and Vipin Kumar. 2002. Parallel static and dynamic multi-constraint graph partitioning. Concurrency Comp.: Pract. and Exp. 14, 3 (2002), 219--240.
[52]
Fengyan Shi, James T. Kirby, Jeffrey C. Harris, Joseph D. Geiman, and Stephan T. Grilli. 2012. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Modelling 43--44 (Jan 2012), 36--51.
[53]
Anthony Sladen, Diane Rivet, Jean-Paul Ampuero, Louis De Barros, Yann Hello, Gaëtan Calbris, and Patrick Lamare. 2019. Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nat. Commun. 10, 1 (2019), 1--8.
[54]
J. S. Sochacki, J. H. George, R. E. Ewing, and S. B. Smithson. 1991. Interface conditions for acoustic and elastic wave propagation. GEOPHYSICS 56, 2 (1991), 168--181.
[55]
Y. Tony Song, L.-L. Fu, Victor Zlotnicki, Chen Ji, Vala Hjorleifsdottir, C.K. Shum, and Yuchan Yi. 2008. The role of horizontal impulses of the faulting continental slope in generating the 26 December 2004 tsunami. Ocean Modell. 20, 4 (2008), 362--379.
[56]
W.J. Stephenson, N.G. Reitman, and S.J. Angster. 2017. U.S. Geological Survey Open-File Report 2017--1152: P- and S-wave velocity models incorporating the Cascadia subduction zone for 3D earthquake ground motion simulations, version 1.6---Update for Open-File Report 2007--1348. Technical Report. U.S. Geol. Surv.
[57]
Vladimir A. Titarev and Eleuterio F. Toro. 2002. ADER: Arbitrary high order Godunov approach. J. Sci. Comput. 17, 1 (2002), 609--618.
[58]
Eleuterio F. Toro. 2009. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer Berlin Heidelberg.
[59]
Thomas Ulrich, Alice-Agnes Gabriel, and Elizabeth Madden. 2021. Stress, rigidity and sediment strength control megathrust earthquake and tsunami dynamics. Nat. Geosci. (2021).
[60]
Thomas Ulrich, Stefan Vater, Elizabeth H. Madden, Jörn Behrens, Ylona van Dinther, Iris Van Zelst, Eric J. Fielding, Cunren Liang, and A.-A. Gabriel. 2019. Coupled, physics-based modeling reveals earthquake displacements are critical to the 2018 Palu, Sulawesi tsunami. Pure Appl. Geophys. 176, 10 (2019), 4069--4109.
[61]
Carsten Uphoff and Michael Bader. 2020. Yet Another Tensor Toolbox for Discontinuous Galerkin Methods and Other Applications. ACM Trans. Math. Softw. 46, 4, Article 34 (Oct. 2020), 40 pages.
[62]
Carsten Uphoff, Sebastian Rettenberger, Michael Bader, Elizabeth H. Madden, Thomas Ulrich, Stephanie Wollherr, and Alice-Agnes Gabriel. 2017. Extreme scale multi-physics simulations of the tsunamigenic 2004 Sumatra megathrust earthquake. In Proc. Int. Conf. High Perf. Comput., Networking, Storage and Analysis (SC '17). Association for Computing Machinery, New York, NY, USA, 1--16.
[63]
Jim Verner. 2013. Jim Verner's Refuge for Runge-Kutta Pairs. http://people.math.sfu.ca/~jverner/. Accessed: 2020-04-01.
[64]
Lucas C. Wilcox, Georg Stadler, Carsten Burstedde, and Omar Ghattas. 2010. A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media. J. Comput. Phys. 229, 24 (Dec. 2010), 9373--9396.
[65]
Stephanie Wollherr, Alice-Agnes Gabriel, and Carsten Uphoff. 2018. Off-fault plasticity in three-dimensional dynamic rupture simulations using a modal Discontinuous Galerkin method on unstructured meshes: implementation, verification and application. Geophys. J. Int. 214, 3 (sep 2018), 1556--1584.
[66]
Brian J. N. Wylie. 2020. Exascale potholes for HPC: Execution performance and variability analysis of the flagship application code HemeLB. In 2020 IEEE/ACM Int. Workshop HPC User Support Tools (HUST) & Workshop Program. & Perform. Visual. Tools (ProTools). IEEE.
[67]
Zhongwen Zhan, Mattia Cantono, Valey Kamalov, Antonio Mecozzi, Rafael Müller, Shuang Yin, and Jorge C. Castellanos. 2021. Optical polarization-based seismic and water wave sensing on transoceanic cables. Science 371, 6532 (2021), 931--936.

Cited By

View all
  • (2024)Linked and fully coupled 3D earthquake dynamic rupture and tsunami modeling for the Húsavík–Flatey Fault Zone in North IcelandSolid Earth10.5194/se-15-251-202415:2(251-280)Online publication date: 14-Feb-2024
  • (2024)Source Properties of the Induced ML 0.0–1.8 Earthquakes from Local Beamforming and Backprojection in the Helsinki Area, Southern FinlandSeismological Research Letters10.1785/0220240122Online publication date: 4-Sep-2024
  • (2024)Non‐Typical Supershear Rupture: Fault Heterogeneity and Segmentation Govern Unilateral Supershear and Cascading Multi‐Fault Rupture in the 2021 Mw ${M}_{w}$7.4 Maduo EarthquakeGeophysical Research Letters10.1029/2024GL11012851:20Online publication date: 14-Oct-2024
  • Show More Cited By

Index Terms

  1. 3D acoustic-elastic coupling with gravity: the dynamics of the 2018 Palu, Sulawesi earthquake and tsunami

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SC '21: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
    November 2021
    1493 pages
    ISBN:9781450384421
    DOI:10.1145/3458817
    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Sponsors

    In-Cooperation

    • IEEE CS

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 13 November 2021

    Check for updates

    Badges

    Author Tags

    1. ADER-DG
    2. SeisSol
    3. computational seismology
    4. earthquake simulation
    5. elastic-acoustic-coupling
    6. tsunami generation

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    SC '21
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 1,516 of 6,373 submissions, 24%

    Upcoming Conference

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)250
    • Downloads (Last 6 weeks)41
    Reflects downloads up to 23 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Linked and fully coupled 3D earthquake dynamic rupture and tsunami modeling for the Húsavík–Flatey Fault Zone in North IcelandSolid Earth10.5194/se-15-251-202415:2(251-280)Online publication date: 14-Feb-2024
    • (2024)Source Properties of the Induced ML 0.0–1.8 Earthquakes from Local Beamforming and Backprojection in the Helsinki Area, Southern FinlandSeismological Research Letters10.1785/0220240122Online publication date: 4-Sep-2024
    • (2024)Non‐Typical Supershear Rupture: Fault Heterogeneity and Segmentation Govern Unilateral Supershear and Cascading Multi‐Fault Rupture in the 2021 Mw ${M}_{w}$7.4 Maduo EarthquakeGeophysical Research Letters10.1029/2024GL11012851:20Online publication date: 14-Oct-2024
    • (2024)Dynamic Rupture Simulations of Caldera Collapse Earthquakes: Effects of Wave Radiation, Magma Viscosity, and Evidence of Complex Nucleation at Kı̄lauea 2018Journal of Geophysical Research: Solid Earth10.1029/2023JB028280129:4Online publication date: 3-Apr-2024
    • (2024)Rupture Dynamics of Cascading Earthquakes in a Multiscale Fracture NetworkJournal of Geophysical Research: Solid Earth10.1029/2023JB027578129:3Online publication date: 19-Mar-2024
    • (2024) Linking 3D Long‐Term Slow‐Slip Cycle Models With Rupture Dynamics: The Nucleation of the 2014 M w 7.3 Guerrero, Mexico Earthquake AGU Advances10.1029/2023AV0009795:2Online publication date: 30-Mar-2024
    • (2024)2D FDM Simulation of Seismic Waves and Tsunamis Based on Improved Coupling Equations Under GravityPure and Applied Geophysics10.1007/s00024-024-03468-2181:4(1053-1073)Online publication date: 9-Apr-2024
    • (2024)Fused GEMMs towards an efficient GPU implementation of the ADER‐DG method in SeisSolConcurrency and Computation: Practice and Experience10.1002/cpe.803736:12Online publication date: 13-Feb-2024
    • (2023)Equivalent Near-Field Corner Frequency Analysis of 3D Dynamic Rupture Simulations Reveals Dynamic Source EffectsSeismological Research Letters10.1785/022023022595:2A(900-924)Online publication date: 7-Dec-2023
    • (2023) Numerical Simulations of Seismoacoustic Nuisance Patterns from an Induced M 1.8 Earthquake in the Helsinki, Southern Finland, Metropolitan Area Bulletin of the Seismological Society of America10.1785/0120220225113:4(1596-1615)Online publication date: 7-Jul-2023
    • Show More Cited By

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media