Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3450508.3464571acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
course

Contact and friction simulation for computer graphics

Published: 21 July 2021 Publication History

Abstract

Efficient simulation of contact is of interest for numerous physics-based animation applications. For instance, virtual reality training, video games, rapid digital prototyping, and robotics simulation are all examples of applications that involve contact modeling and simulation. However, despite its extensive use in modern computer graphics, contact simulation remains one of the most challenging problems in physics-based animation.
This course covers fundamental topics on the nature of contact modeling and simulation for computer graphics. Specifically, we provide mathematical details about formulating contact as a complementarity problem in rigid body and soft body animations. We briefly cover several approaches for contact generation using discrete collision detection. Then, we present a range of numerical techniques for solving the associated LCPs and NCPs. The advantages and disadvantages of each technique are further discussed in a practical manner, and best practices for implementation are discussed. Finally, we conclude the course with several advanced topics, such as anisotropic friction modeling and proximal operators. Programming examples are provided on the course website to accompany the course notes.

Supplementary Material

VTT File (3450508.3464571.vtt)
MP4 File (3450508.3464571.mp4)
Presentation.

References

[1]
V. Acary, F. Cadoux, C. Lemaréchal, and J. Malick. 2011. A formulation of the linear discrete Coulomb friction problem via convex optimization. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 91, 2 (2011), 155--175.
[2]
S. Andrews, K. Erleben, P. G. Kry, and M. Teichmann. 2017. Constraint reordering for iterative multi-body simulation with contact. In ECCOMAS '17: Proc. of the Multibody Dynamics 2007 ECCOMAS Thematic Conference. ECCOMAS, Prague, Czech Republic.
[3]
M. Anitescu and G. D. Hart. 2004. A constraint-stabilized time-stepping approach for rigid multibody dynamics with joints, contact and friction. Intl. Journal for Numerical Methods in Engineering 60, 14 (2004), 2335--2371.
[4]
M. Anitescu and F. A. Potra. 1997. Formulating Dynamic Multi-Rigid-Body Contact Problems with Friction as Solvable Linear Complementarity Problems. Nonlinear Dynamics 14 (1997), 231--247. Issue 3.
[5]
M. Anitescu and A. Tasora. 2010. An iterative approach for cone complementarity problems for nonsmooth dynamics. Computational Optimization and Applications 47, 2 (October 2010), 207--235.
[6]
D. Baraff. 1993. Issues in computing contact forces for nonpenetrating rigid bodies. Algorithmica. An Intl. Journal in Computer Science 10, 2-4 (1993), 292--352.
[7]
D. Baraff. 1994. Fast contact force computation for nonpenetrating rigid bodies. In Proc. of the 21st Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '94). ACM, New York, NY, USA, 23--34.
[8]
A. W. Bargteil, T. Shinar, and P. G. Kry. 2020. An Introduction to Physics-Based Animation. In SIGGRAPH Asia 2020 Courses (Virtual Event) (SA '20). ACM, New York, NY, USA, Article 5, 57 pages.
[9]
J. Baumgarte. 1972. Stabilization of constraints and integrals of motion in dynamical systems. Computer Methods in Applied Mechanics and Engineering 1, 1 (1972), 1--16.
[10]
J. Bender, K. Erleben, and J. Trinkle. 2014. Interactive Simulation of Rigid Body Dynamics in Computer Graphics. Comp. Graph. Forum 33, 1 (2014), 246--270.
[11]
S. Boyd and L. Vandenberghe. 2004. Convex Optimization. Cambridge University Press, Cambridge. Bridson, R. Fedkiw, and J. Anderson. 2002. Robust Treatment of Collisions, Contact and Friction for Cloth Animation. ACM Trans. Graph. 21, 3 (July 2002), 594--603. https://doi.org/10.1145/566654.566623
[12]
D. T. Chen and D. Zeltzer. 1992. Pump It up: Computer Animation of a Biomechanically Based Model of Muscle Using the Finite Element Method. In Proc. of the 19th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '92). ACM, New York, NY, USA, 89--98.
[13]
M. B. Cline and D. K. Pai. 2003. Post-stabilization for rigid body simulation with contact and constraints. In 2003 IEEE Intl. Conference on Robotics and Automation, Vol. 3. IEEE, Taipei, Taiwan, 3744--3751.
[14]
R. Cottle. 1968. Complementary Pivot Theory of Mathematical Programming. Linear Algebra and Its Applications 1 (1968), 103--125.
[15]
R. Cottle, J.-S. Pang, and R. E. Stone. 1992. The Linear Complementarity Problem. Academic Press, Boston.
[16]
E. Coumans. 2005. The Bullet Physics Library. http://www.pybullet.org.
[17]
G. Daviet. 2020. Simple and Scalable Frictional Contacts for Thin Nodal Objects. ACM Trans. Graph. 39, 4, Article 61 (July 2020), 16 pages.
[18]
G. Daviet, F. Bertails-Descoubes, and L. Boissieux. 2011. A hybrid iterative solver for robustly capturing coulomb friction in hair dynamics. ACM Trans. Graph. 30, 6, Article 139 (Dec. 2011), 12 pages.
[19]
A. Enzenhoefer, N. Lefebvre, and S. Andrews. 2019. Efficient Block Pivoting for Multibody Simulations with Contact. In Proc. of the 2019 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (Montreal, Quebec, Canada) (I3D '19). ACM, New York, NY, USA, Article 2, 9 pages.
[20]
K. Erleben. 2005. Stable, Robust, and Versatile Multibody Dynamics Animation. Ph.D. Dissertation. Department of Computer Science, University of Copenhagen (DIKU).
[21]
K. Erleben. 2007. Velocity-Based Shock Propagation for Multibody Dynamics Animation. ACM Trans. Graph. 26, 2 (June 2007), 12--es.
[22]
K. Erleben. 2017. Rigid Body Contact Problems Using Proximal Operators. In Proc. of the 2017 ACM SIGGRAPH / Eurographics Symposium on Computer Animation (Los Angeles, California) (SCA '17). ACM, New York, NY, USA, Article 13, 12 pages.
[23]
K. Erleben, M. Andersen, N. S., and S. M. 2011. num4lcp. https://github.com/erleben/num4lcp.
[24]
K. Erleben, M. Macklin, S. Andrews, and P. G. Kry. 2020. The Matchstick Model for Anisotropic Friction Cones. Comp. Graph. Forum 39, 1 (2020), 450--461.
[25]
M. C. Ferris and T. S. Munson. 1999. Interfaces to PATH 3.0: Design, Implementation and Usage. Comput. Optim. Appl. 12 (January 1999), 207--227. Issue 1--3.
[26]
A. Fischer. 1992. A special newton-type optimization method. Optimization 24, 3-4 (1992), 269--284.
[27]
M. Foerg, T. Geier, L. Neumann, and H. Ulbrich. 2006. r-Factor Strategies for the Augmented Lagrangian Approach in Multi-Body Contact Mechanics. In III European Conference on Computational Mechanics. Springer Netherlands, Dordrecht, NL, 316.
[28]
M. Fratarcangeli and F. Pellacini. 2015. Scalable Partitioning for Parallel Position Based Dynamics. Comput. Graph. Forum 34, 2 (May 2015), 405--413.
[29]
S. F. Frisken, R. N. Perry, A. P. Rockwood, and T. R. Jones. 2000. Adaptively Sampled Distance Fields: A General Representation of Shape for Computer Graphics. In Proc. of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '00). ACM Press/Addison-Wesley Publishing Co., USA, 249--254.
[30]
M. Geilinger, D. Hahn, J. Zehnder, M. Bächer, B. Thomaszewski, and S. Coros. 2020. ADD: Analytically Differentiable Dynamics for Multi-Body Systems with Frictional Contact. ACM Trans. Graph. 39, 6, Article 190 (Nov. 2020), 15 pages.
[31]
E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. 1988. A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE Journal on Robotics and Automation 4, 2 (1988), 193--203.
[32]
H. Goldstein, C. Poole, and J. Safko. 2002. Classical mechanics. Addison-Wesley, USA. 638 pages.
[33]
S. Goyal, A. Ruina, and J. Papadopoulos. 1989. Limit Surface and Moment Funktion Descriptions of Planar Sliding. In Proc. of the 1989 IEEE Intl. Conference on Robotics and Automation (Vol. 2). IEEE, Scottsdale, AZ, 794--799.
[34]
S. Hasegawa, N. Fujii, Y. Koike, and M. Sato. 2003. Real-Time Rigid Body Simulation Based on Volumetric Penalty Method. In HAPTICS '03: Proc. of the 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. IEEE Computer Society, Los Alamitos, CA, USA, 326.
[35]
J. Jansson and J. S. M. Vergeest. 2002. A discrete mechanics model for deformable bodies. Computer-Aided Design 34, 12 (2002), 913--928.
[36]
J. Jansson and J. S. M. Vergeest. 2003. Combining Deformable- and Rigid-Body Mechanics Simulation. Vis. Comput. 19, 5 (Aug. 2003), 280--290.
[37]
M. Jean. 1999. The non-smooth contact dynamics method. Computer Methods in Applied Mechanics and Engineering 177, 3-4 (July 1999), 235--257.
[38]
M. W. Jones, J. A. Baerentzen, and M. Sramek. 2006. 3D distance fields: A survey of techniques and applications. IEEE Transactions on visualization and Computer Graphics 12, 4 (2006), 581--599.
[39]
F. Jourdan, P. Alart, and M. Jean. 1998. A Gauss-Seidel like algorithm to solve frictional contact problems. Computer Methods in Applied Mechanics and Engineering 155, 1 (1998), 31 -- 47.
[40]
J. J. Júdice and F. M. Pires. 1994. A block principal pivoting algorithm for large-scale strictly monotone linear complementarity problems. Computers & operations research 21, 5 (1994), 587--596.
[41]
D. M. Kaufman, S. Sueda, D. L. James, and D. K. Pai. 2008. Staggered Projections for Frictional Contact in Multibody Systems. ACM Trans. Graph. 27, 5, Article Article 164 (Dec. 2008), 11 pages.
[42]
T. Kim and D. Eberle. 2020. Dynamic Deformables: Implementation and Production Practicalities. In ACM SIGGRAPH 2020 Courses (Virtual Event, USA) (SIGGRAPH '20). ACM, New York, NY, USA, Article 23, 182 pages.
[43]
Y.J. Kim, M. A. Otaduy, M. C. Lin, and D. Manocha. 2002. Fast Penetration Depth Computation for Physically-Based Animation. In Proc. of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (San Antonio, Texas) (SCA '02). ACM, New York, NY, USA, 23--31.
[44]
D. Koschier, C. Deul, and J. Bender. 2016. Hierarchical Hp-Adaptive Signed Distance Fields. In Proc. of the 2016 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Zurich, Switzerland) (SCA '16). Eurographics Association, Goslar, DEU, 189--198.
[45]
C. Lacoursiere and M. Linde. 2011. Spook: a variational time-stepping scheme for rigid multibody systems subject to dry frictional contacts. Technical Report. HPC2N and Department of Computer Science, Umeaa University, Sweeden.
[46]
R. I. Leine and C. Glocker. 2003. A set-valued force law for spatial coulomb-contensou friction. European Journal of Mechanics - A/Solids 22, 2 (2003), 193--216.
[47]
J. Lloyd. 2005. Fast Implementation of Lemke's Algorithm for Rigid Body Contact Simulation. In ICRA '05: Proc. of the 2005 IEEE Intl. Conference on Robotics and Automation. IEEE, Barcelona, Spain, 4538--4543.
[48]
P. Lötstedt. 1984. Numerical Simulation of Time-Dependent Contact and Friction Problems in Rigid Body Mechanics. SIAM journal on scientific and statistical computing 5, 2 (1984), 370--393.
[49]
M. Macklin, K. Erleben, M. Müller, N. Chentanez, S. Jeschke, and Z. Corse. 2020a. Local Optimization for Robust Signed Distance Field Collision. Proc. of the ACM on Computer Graphics and Interactive Techniques 3, 1 (2020), 1--17.
[50]
M. Macklin, K. Erleben, M. Müller, N. Chentanez, S. Jeschke, and T. Y. Kim. 2020b. Primal/Dual Descent Methods for Dynamics. In Proc. of the 2020 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Virtual Event, Canada) (SCA '20). Eurographics Association, Goslar, DEU, Article 9, 12 pages.
[51]
M. Macklin, K. Erleben, M. Müller, N. Chentanez, S. Jeschke, and V. Makoviychuk. 2019. Non-Smooth Newton Methods for Deformable Multi-Body Dynamics. ACM Trans. Graph. 38, 5, Article Article 140 (Oct. 2019), 20 pages.
[52]
H. Mazhar, T. Heyn, D. Negrut, and A. Tasora. 2015. Using Nesterov's Method to Accelerate Multibody Dynamics with Friction and Contact. ACM Trans. Graph. 34, 3, Article 32 (May 2015), 14 pages.
[53]
M. McKenna and D. Zeltzer. 1990. Dynamic simulation of autonomous legged locomotion. In Proc. of the 17th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '90). ACM, Dallas, TX, USA, 29--38.
[54]
X. Merlhiot. 2007. A robust, efficient and time-stepping compatible collision detection method for non-smooth contact between rigid bodies of arbitrary shape. In ECCOMAS '07: Proc. of the 2007 Multibody Dynamics ECCOMAS Thematic Conference. ECCOMAS, Milano, Italy, 20.
[55]
M. Moore and J. Wilhelms. 1988. Collision detection and response for computer animationr3. In Proc. of the 15th annual conference on Computer graphics and interactive techniques (SIGGRAPH '88). ACM, New York, NY, USA, 289--298.
[56]
J. J. Moreau. 1999. Numerical aspects of the sweeping process. Computer Methods in Applied Mechanics and Engineering 177, 3-4 (July 1999), 329--349.
[57]
T. S. Munson, F. Facchinei, M. C. Ferris, A. Fischer, and C. Kanzow. 2001. The Semismooth Algorithm for Large Scale Complementarity Problems. INFORMS Journal on Computing 13, 4 (2001), 294--311.
[58]
K. G. Murty. 1974. Note on a Bard-type scheme for solving the complementarity problem. Opsearch 11, 2-3 (1974), 123--130.
[59]
K. G. Murty and F.-T. Yu. 1988. Linear Complementarity, Linear and Nonlinear Programming. Vol. 3. Helderman-Verlag, Berlin, Germany. 629 pages.
[60]
S. M. Niebe. 2014. Rigid Bodies in Contact: and Everything in Between. Ph.D. Dissertation. Department of Computer Science, Faculty of Science, University of Copenhagen.
[61]
J. Nocedal and S. J. Wright. 2006. Numerical optimization. Springer-Verlag, New York. 664 pages.
[62]
S. Pabst, B. Thomaszewski, and W. Straßer. 2009. Anisotropic Friction for Deformable Surfaces and Solids. In Proc. of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (New Orleans, Louisiana) (SCA '09). ACM, New York, NY, USA, 149--154.
[63]
N. Parikh and S. Boyd. 2014. Proximal Algorithms. Found. Trends Optim. 1, 3 (Jan. 2014), 127--239.
[64]
A. Peiret, S. Andrews, J. Kovecses, P. G. Kry, and M. Teichmann. 2019. Schur Complement-based Substructuring of Stiff Multibody Systems with Contact. ACM Trans. Graph. 38, 5, Article 150 (2019), 17 pages.
[65]
M. Poulsen, S. Niebe, and K. Erleben. 2010. Heuristic Convergence Rate Improvements of the Projected Gauss-Seidel Method for Frictional Contact Problems. In WSCG '10: In Proc. of the 18th Intl. Conf. in Central Europe on Computer Graphics, Visualization and Computer Vision. University of West Bohemia, Plzen, Czech Republic, 135--142.
[66]
G. Sheng Chen and X. Liu. 2016. Chapter 3 - Friction. In Friction Dynamics, Gang Sheng Chen and Xiandong Liu (Eds.). Woodhead Publishing, Cambridge, UK, 91--159.
[67]
E. Sifakis and J. Barbic. 2012. FEM Simulation of 3D Deformable Solids: A Practitioner's Guide to Theory, Discretization and Model Reduction. In ACM SIGGRAPH 2012 Courses (Los Angeles, California) (SIGGRAPH '12). ACM, New York, NY, USA, Article 20, 50 pages.
[68]
M. Silcowitz, S. Niebe, and K. Erleben. 2009. Nonsmooth Newton Method for Fischer Function Reformulation of Contact Force Problems for Interactive Rigid Body Simulation. In Proc. of the 6th Workshop on Virtual Reality Interaction and Physical Simulation (Karlsruhe, DE) (VRIPHYS '09). The Eurographics Association, Karlsruhe, DE, 105--114.
[69]
M. Silcowitz, S. Niebe, and K. Erleben. 2010a. A nonsmooth nonlinear conjugate gradient method for interactive contact force problems. The Visual Computer 26, 6 (2010), 893--901.
[70]
M. Silcowitz, S. Niebe, and K. Erleben. 2010b. Projected Gauss-Seidel Subspace Minimization Method for Interactive Rigid Body Dynamics. In VISIGRAPP '10: Proc. of the 5th Intl. Conference on Computer Graphics Theory and Applications. Springer Berlin Heidelberg, Angers, France, 218--229.
[71]
M. Silcowitz-Hansen. 2010. Jinngine: a Physics Engine Written In Java. https://github.com/rzel/jinngine
[72]
D. E. Stewart and J. C. Trinkle. 1996. An Implicit Time-Stepping Scheme for Rigid Body Dynamics with Inelastic Collisions and Coulomb Friction. Intl. Journal of Numerical Methods in Engineering 39, 15 (1996), 2673--2691.
[73]
C. W. Studer. 2008. Augmented Time-stepping Integration of Non-smooth Dynamical Systems. Ph.D. Dissertation. ETH Zurich.
[74]
I. E. Sutherland and G. W. Hodgman. 1974. Reentrant polygon clipping. Commun. ACM 17, 1 (1974), 32--42.
[75]
A. Tasora, D. Mangoni, S. Benatti, and R. Garziera. 2021. Solving variational inequalities and cone complementarity problems in nonsmooth dynamics using the alternating direction method of multipliers. Intl. Journal for Numerical Methods in Engineering n/a, n/a (2021).
[76]
D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. 1987. Elastically Deformable Models. In Proc. of the 14th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '87). Association for Computing Machinery, New York, NY, USA, 205--214.
[77]
G. Van Den Bergen. 2003. Collision detection in interactive 3D environments. CRC Press, San Francisco, USA. 277 pages.
[78]
H. Xu and J. Barbič. 2014. Signed distance fields for polygon soup meshes. In Proc. of the 40th Graphics Interface Conference (GI '14). Canadian Information Processing Society, Montreal, Canada, 35--41.
[79]
H. Xu, Y. Zhao, and J. Barbič. 2014. Implicit Multibody Penalty-based Distributed Contact. IEEE Transactions on Visualization and Computer Graphics 20, 9 (Sep. 2014), 1266--1279.

Cited By

View all
  • (2024)Research progress in human-like indoor scene interactionJournal of Image and Graphics10.11834/jig.24000429:6(1575-1606)Online publication date: 2024
  • (2023)Monolithic Friction and Contact Handling for Rigid Bodies and Fluids Using SPHComputer Graphics Forum10.1111/cgf.1472742:1(155-179)Online publication date: 20-Jan-2023
  • (2022)ULNeFProceedings of the 36th International Conference on Neural Information Processing Systems10.5555/3600270.3601150(12110-12125)Online publication date: 28-Nov-2022
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGGRAPH '21: ACM SIGGRAPH 2021 Courses
August 2021
2220 pages
ISBN:9781450383615
DOI:10.1145/3450508
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 21 July 2021

Check for updates

Author Tags

  1. Newton methods
  2. complementarity problems
  3. contact
  4. friction
  5. iterative methods
  6. physics-based animation
  7. pivoting methods
  8. splitting methods

Qualifiers

  • Course

Conference

SIGGRAPH '21
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,822 of 8,601 submissions, 21%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)41
  • Downloads (Last 6 weeks)3
Reflects downloads up to 01 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Research progress in human-like indoor scene interactionJournal of Image and Graphics10.11834/jig.24000429:6(1575-1606)Online publication date: 2024
  • (2023)Monolithic Friction and Contact Handling for Rigid Bodies and Fluids Using SPHComputer Graphics Forum10.1111/cgf.1472742:1(155-179)Online publication date: 20-Jan-2023
  • (2022)ULNeFProceedings of the 36th International Conference on Neural Information Processing Systems10.5555/3600270.3601150(12110-12125)Online publication date: 28-Nov-2022
  • (2022)Real‐Time FE Simulation for Large‐Scale Problems Using Precondition‐Based Contact Resolution and Isolated DOFs ConstraintsComputer Graphics Forum10.1111/cgf.1456341:6(418-434)Online publication date: 6-Jun-2022

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media