Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3449726.3459438acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
poster

Stochastic local search for efficient hybrid feature selection

Published: 08 July 2021 Publication History

Abstract

There is a need to study not only accuracy but also computational cost in machine learning. Focusing on both accuracy and computational cost of feature selection, we develop and test stochastic local search (SLS) heuristics for hybrid feature selection.

Supplementary Material

ZIP File (p133-mengshoel_suppl.zip)
p133-mengshoel_suppl.zip

References

[1]
A. Bommert, X. Sun, B. Bischl, J. Rahnenführer, and M. Lang. 2019. Benchmark for filter methods for feature selection in high-dimensional classification data. Computational Statistics & Data Analysis 143 (2019), 1--19.
[2]
J. Chen, M. Stern, M. J. Wainwright, and M. I. Jordan. 2017. Kernel feature selection via conditional covariance minimization. In NeurIPS. 6946--6955.
[3]
I. Guyon and A. Elisseeff. 2003. An introduction to variable and feature selection. JMLR 3 (2003), 1157--1182.
[4]
I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror. 2004. Result analysis of the NIPS 2003 feature selection challenge. In NIPS. 545--552.
[5]
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. 2002. Gene Selection for Cancer Classification Using Support Vector Machines. Machine Learning 46 (2002), 389--422.
[6]
H. H. Hoos. 2002. An Adaptive Noise Mechanism for WalkSAT. In AAAI. 655--660.
[7]
H. H. Hoos. 2002. A mixture-model for the behaviour of SLS algorithms for SAT. In Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI-02). Edmonton, Alberta, Canada, 661--667.
[8]
Boehringer Ingelheim. 2012. Predicting a Biological Response. (2012). https://www.kaggle.com/c/bioresponse/data
[9]
R. Kohavi and G. H. John. 1997. Wrappers for feature subset selection. Artificial Intelligence 97, 1-2 (1997), 273--324.
[10]
G. Krafotias, M. Hoogendoorn, and A. E. Eiben. 2015. Parameter Control in Evolutionary Algorithms: Trends and Challenges. IEEE Transactions on Evolutionary Computation 19, 2 (2015), 167--187.
[11]
J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and H. Liu. 2017. Feature Selection: A Data Perspective. ACM Compututing Surveys 50, 6 (2017).
[12]
O. J. Mengshoel. 2008. Understanding the Role of Noise in Stochastic Local Search: Analysis and Experiments. Artificial Intelligence 172, 8-9 (2008), 955--990.
[13]
O. J. Mengshoel, Y. Ahres, and T. Yu. 2016. Markov Chain Analysis of Noise and Restart in Stochastic Local Search. In IJCAI. 639--646.
[14]
O. J. Mengshoel, D. C. Wilkins, and D. Roth. 2011. Initialization and Restart in Stochastic Local Search: Computing a Most Probable Explanation in Bayesian Networks. IEEE TKDE 23, 2 (2011), 235--247.
[15]
O. J. Mengshoel, T. Yu, and M. Zeng. 2020. Stochastic Local Search and Machine Learning: From Theory to Application and Vice Versa. In ECAI. 2919--2920.
[16]
M. Själander, M. Jahre, G. Tufte, and N. Reissmann. 2019. EPIC: An Energy-Efficient, High-Performance GPGPU Computing Research Infrastructure. (2019). arXiv:cs.DC/1912.05848
[17]
R. Tibshirani. 1996. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58, 1 (1996), 267--288.
[18]
T. Weise, Z. Wu, and M. Wagner. 2019. An Improved Generic Bet-and-Run Strategy for Speeding Up Stochastic Local Search. In AAAI. 2395--2402.

Cited By

View all
  • (2024)Regularized Feature Selection Landscapes: An Empirical Study of MultimodalityParallel Problem Solving from Nature – PPSN XVIII10.1007/978-3-031-70055-2_25(409-426)Online publication date: 7-Sep-2024
  • (2022)A dataset for efforts towards achieving the sustainable development goal of safe working environmentsProceedings of the 36th International Conference on Neural Information Processing Systems10.5555/3600270.3601963(23297-23310)Online publication date: 28-Nov-2022

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
GECCO '21: Proceedings of the Genetic and Evolutionary Computation Conference Companion
July 2021
2047 pages
ISBN:9781450383516
DOI:10.1145/3449726
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 08 July 2021

Check for updates

Author Tags

  1. feature selection
  2. filter
  3. optimization
  4. pseudo-boolean functions
  5. stochastic local search
  6. wrapper

Qualifiers

  • Poster

Conference

GECCO '21
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Regularized Feature Selection Landscapes: An Empirical Study of MultimodalityParallel Problem Solving from Nature – PPSN XVIII10.1007/978-3-031-70055-2_25(409-426)Online publication date: 7-Sep-2024
  • (2022)A dataset for efforts towards achieving the sustainable development goal of safe working environmentsProceedings of the 36th International Conference on Neural Information Processing Systems10.5555/3600270.3601963(23297-23310)Online publication date: 28-Nov-2022

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media