Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article
Open access

Modal Resolution: Proofs, Layers, and Refinements

Published: 13 August 2019 Publication History

Abstract

Resolution-based provers for multimodal normal logics require pruning of the search space for a proof to ameliorate the inherent intractability of the satisfiability problem for such logics. We present a clausal modal-layered hyper-resolution calculus for the basic multimodal logic, which divides the clause set according to the modal level at which clauses occur to reduce the number of possible inferences. We show that the calculus is complete for the logics being considered. We also show that the calculus can be combined with other strategies. In particular, we discuss the completeness of combining modal layering with negative and ordered resolution and provide experimental results comparing the different refinements.

References

[1]
Hajnal Andréka, Johan van Benthem, and Istvan Németi. 1998. Modal logics and bounded fragments of predicate logic. J. Philos. Logic 27, 3 (1998), 217--274.
[2]
Carlos Areces, Rosella Gennari, Juan Heguiabehere, and Maarten de Rijke. 2000. Tree-based heuristics in modal theorem proving. In Proceedings of the 14th European Conference on Artificial Intelligence (ECAI’00). IOS Press, 199--203.
[3]
Carlos Areces and Daniel Gorín. 2011. Resolution with order and selection for hybrid logics. J. Auto. Reason. 46, 1 (2011), 1--42.
[4]
Carlos Areces and Juan Heguiabehere. 2002. HyLoRes 1.0: Direct resolution for hybrid logics. In Proceedings of the 18th International Conference on Automated Deduction (CADE'18). Lecture Notes in Computer Science, vol. 2392. 156--160.
[5]
Carlos Areces, Hans de Nivelle, and Maarten de Rijke. 1999. Prefixed resolution: A resolution method for modal and description logics. In Proceedings of the 16th International Conference on Automated Deduction (CADE’99) (Lecture Notes in Artificial Intelligence), vol. 1632. Springer, 187--201.
[6]
Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-Schneider. 2003. The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press.
[7]
Matthias Baaz, Uwe Egly, and Alexander Leitsch. 2001. Normal form transformations. In Handbook of Automated Reasoning, Alan Robinson and Andrei Voronkov (Eds.), vol. I. Elsevier and MIT Press, 273--333.
[8]
Matthias Baaz and Christian G. Fermüller. 1992. Resolution for many-valued logics. In Proceedings of the International Conference on Logic Programming and Automated Reasoning (LPAR’92) (Lecture Notes in Computer Science), Andre Voronkov (Ed.), vol. 624. Springer, 107--118.
[9]
Matthias Baaz, Christian G. Fermüller, and Gernot Salzer. 2001. Automated deduction for many-valued logics. In Handbook of Automated Reasoning, Alan Robinson and Andrei Voronkov (Eds.), vol. II. Elsevier and MIT Press, chap. 20, 1355--1402.
[10]
Leo Bachmair and Harald Ganzinger. 1990. On restrictions of ordered paramodulation with simplification. In Proceedings of the 10th International Conference on Automated Deduction (CADE’90) (Lecture Notes in Computer Science), vol. 449. Springer, 427--441.
[11]
Philippe Balbiani and Stéphane Demri. 1997. Prefixed tableaux systems for modal logics with enriched languages. In Proceedings of the 15th International Joint Conference on Artificiall Intelligence (JCAI’97). Morgan Kaufmann, 190--195.
[12]
Peter Balsiger, Alain Heuerding, and Stefan Schwendimann. 2000. A benchmark method for the propositional modal logics K, KT, S4. J. Auto. Reason. 24, 3 (2000), 297--317.
[13]
David Basin, Sean Matthews, and Luca Vigano. 1997. Labelled propositional modal logics: Theory and practice. J. Logic Comput. 7, 6 (1997), 685--717.
[14]
Patrick Blackburn, Maarten de Rijke, and Yde Venema. 2001. Modal Logic. Cambridge University Press.
[15]
Torben Braüner. 2014. Hybrid logic. In Handbook of Philosophical Logic, vol. 17. Dov M. Gabbay and Franz Guenthner (Eds.). Springer, 1--77.
[16]
Luis Fariñas del Cerro and Andreas Herzig. 1988. Linear modal deductions. In Proceedings of the 9th International Conference on Automated Deduction (CADE’88) (Lecture Notes in Computer Science), vol. 310. Springer, 487--499.
[17]
Melvin Fitting. 2012. Prefixed tableaus and nested sequents. Ann. Pure Appl. Logic 163, 3 (2012), 291--313.
[18]
Melvin Fitting and Richard L. Mendelsohn. 1998. First-Order Modal Logic. Kluwer.
[19]
Valentin Goranko and Solomon Passy. 1992. Using the universal modality: Gains and questions. J. Logic Comput. 2, 1 (1992), 5--30.
[20]
Rajeev Goré, Kerry Olesen, and Jimmy Thomson. 2014. Implementing tableau calculi using BDDs: BDDTab system description. In Proceedings of the 7th International Joint Conference on Automated Deduction (IJCAR’14) (Lecture Notes in Computer Science), vol. 8562. Springer, 337--343.
[21]
Daniel Götzmann, Mark Kaminski, and Gert Smolka. 2010. Spartacus: A tableau prover for hybrid logic. Electron. Notes Theoret. Comput. Sci. 262 (2010), 127--139.
[22]
Reiner Hähnle. 1993. Automated Deduction in Multiple-Valued Logics. Oxford University Press.
[23]
Brent T. Hailpern. 1982. Verifying Concurrent Processes Using Temporal Logic. Lecture Notes in Computer Science, vol. 129. Springer.
[24]
Joseph Y. Halpern. 1987. Using reasoning about knowledge to analyze distributed systems. Annu. Rev. Comput. Sci. 2 (1987), 37--68.
[25]
Joseph Y. Halpern, Zohar Manna, and Ben Moszkowski. 1983. A hardware semantics based on temporal intervals. In Proceedings of the International Colloquium on Automata, Languages and Programming (ICALP’83). Lecture Notes in Computer Science, vol. 154, 278--291.
[26]
Joseph Y. Halpern and Yoram Moses. 1992. A guide to completeness and complexity for modal logics of knowledge and belief. Artific. Intell. 54, 3 (Apr. 1992), 319--379.
[27]
Patrick J. Hayes and Robert A. Kowalski. 1969. Semantic trees in automatic theorem proving. In Proceedings of the 4th Annual Machine Intelligence Workshop. Elsevier, 87--101.
[28]
Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate A. Schmidt. 2006. Computational modal logic. In Handbook of Modal Logic, Patrick Blackburn, Johan van Benthem, and Frank Wolter (Eds.). Elsevier, 181--245.
[29]
Ullrich Hustadt and Boris Konev. 2004. TRP++: A temporal resolution prover. In Collegium Logicum. Kurt Gödel Society, 65--79.
[30]
Mark Kaminski and Tobias Tebbi. 2013. InKreSAT: Modal reasoning via incremental reduction to SAT. In Proceedings of the 24th International Conference on Automated Deduction (CADE’13) (Lecture Notes in Artificial Intelligence), vol. 7898. Springer, 436--442.
[31]
Laura Kovács and Andrei Voronkov. 2013. First-order theorem proving and vampire. In Proceedings of the 25th International Conference on Computer Aided Verification (CAV’13) (Lecture Notes in Computer Science), vol. 8044. Springer, 1--35.
[32]
Richard E. Ladner. 1977. The computational complexity of provability in systems of modal propositional logic. SIAM J. Comput. 6, 3 (1977), 467--480.
[33]
Richard C. T. Lee. 1967. A Completeness Theorem and Computer Program for Finding Theorems Derivable from Given Axioms. Ph.D. Dissertation. Berkeley.
[34]
Maarten Marx. 2006. Complexity of modal logic. In Handbook of Modal Logic, Patrick Blackburn, Johan van Benthem, and Frank Wolter (Eds.). Elsevier, New York, 139--179.
[35]
Maarten Marx and Yde Venema. 2007. Local variations on a loose theme: Modal logic and decidability. In Finite Model Theory and Its Applications. Springer, 371--429.
[36]
Fabio Massacci and Francesco M. Donini. 2000. Design and results of TANCS-2000 non-classical (modal) systems comparison. In Proceedings of the International Conference on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX’00) (Lecture Notes in Computer Science), vol. 1847. Springer, 52--56.
[37]
William W. McCune. 2007. OTTER 3.0 reference manual and guide.
[38]
Eliana Minicozzi and Raymond Reiter. 1972. A note on linear resolution strategies in consequence-finding. Artific. Intell. 3, 1--3 (1972), 175--180.
[39]
Cláudia Nalon and Clare Dixon. 2007. Clausal resolution for normal modal logics. J. Algor. 62 (2007), 117--134. Issue 3-4.
[40]
Cláudia Nalon, Ullrich Hustadt, and Clare Dixon. 2015. A modal-layered resolution calculus for K. In Proceedings of the 24th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX’15) (Lecture Notes in Computer Science), vol. 9323. Springer, 185--200.
[41]
Cláudia Nalon, Ullrich Hustadt, and Clare Dixon. 2016. : K<sub>S</sub>P A resolution-based prover for multimodal K. In Proceedings of the 8th International Joint Conference on Automated Reasoning (IJCAR’16) (Lecture Notes in Computer Science), vol. 9706. Springer, 406--415.
[42]
Cláudia Nalon, Ullrich Hustadt, and Clare Dixon. 2016. K<sub>S</sub>P : Sources and benchmarks. Retrieved from http://www.cic.unb.br/nalon/#software.
[43]
Cláudia Nalon, Ullrich Hustadt, and Clare Dixon. 2017. K<sub>S</sub>P : A resolution-based prover for multimodal K, abridged report. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI’17). 4919--4923.
[44]
Cláudia Nalon, Ullrich Hustadt, and Clare Dixon. 2018. K<sub>S</sub>P a resolution-based theorem prover for K<sub>n</sub>: Architecture, refinements, strategies and experiments. J. Auto. Reason. To appear.
[45]
Andreas Nonnengart and Christoph Weidenbach. 2001. Computing small clause normal forms. In Handbook of Automated Reasoning, Alan Robinson and Andrei Voronkov (Eds.), vol. 1. Elsevier and MIT Press, 335--367.
[46]
Hans Jürgen Ohlbach. 1988. A resolution calculus for modal logics. In Proceedings of the 9th International Conference on Automated Deduction (CADE’88) (Lecture Notes in Computer Science), vol. 310. Springer, 500--516.
[47]
Hans Jürgen Ohlbach. 1991. Semantics-based translation methods for modal logics. J. Logic Comput. 1, 5 (1991), 691--746.
[48]
Hans Jürgen Ohlbach and Renate A. Schmidt. 1997. Functional translation and second-order frame properties of modal logics. J. Logic Comput. 7, 5 (Oct. 1997), 581--603.
[49]
Guoqiang Pan and Moshe Y. Vardi. 2003. Optimizing a BDD-based modal solver. In Proceedings of the 19th International Conference on Automated Deduction (CADE’03) (Lecture Notes in Computer Science), vol. 2741. Springer, 75--89.
[50]
Peter F. Patel-Schneider and Roberto Sebastiani. 2003. A new general method to generate random modal formulae for testing decision procedures. J. Artific. Intell. Res. 18 (2003), 351--389.
[51]
David A. Plaisted and Steven A. Greenbaum. 1986. A structure-preserving clause form translation. J. Logic Comput. 2 (1986), 293--304.
[52]
Vaughan R. Pratt. 1980. Application of modal logic to programming. Studia Logica 39, 2/3 (1980), 257--274.
[53]
Anand S. Rao and Michael P. Georgeff. 1991. Modeling rational agents within a BDI-architecture. In Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning (KR8R’91). Morgan-Kaufmann, 473--484.
[54]
John Alan Robinson. 1965. Automatic deduction with hyper-resolution. Int. J. Comput. Math. 1 (1965), 227--234.
[55]
John Alan Robinson. 1965. A machine--oriented logic based on the resolution principle. J. Assoc. Comput. Mach. 12, 1 (Jan. 1965), 23--41.
[56]
Klaus Schild. 1991. A correspondence theory for terminological logics. In Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI’91). Morgan Kaufmann, 466--471.
[57]
Renate A. Schmidt. 1999. Decidability by resolution for propositional modal logics. J. Auto. Reason. 22, 4 (1999), 379--396.
[58]
Stephan Schulz. 2013. The E Theorem Prover. Retrieved from http://wwwlehre.dhbw-stuttgart.de/ sschulz/E/E.html.
[59]
Stephan Schulz. 2013. Simple and efficient clause subsumption with feature vector indexing. In Automated Reasoning and Mathematics—Essays in Memory of William W. McCune (Lecture Notes in Computer Science), Maria Paola Bonacina and Mark E. Stickel (Eds.), vol. 7788. Springer, 45--67.
[60]
Frantisek Simancik, Boris Motik, and Ian Horrocks. 2014. Consequence-based and fixed-parameter tractable reasoning in description logics. Artific. Intell. 209 (2014), 29--77.
[61]
James R. Slagle. 1967. Automatic theorem proving with renamable and semantic resolution. J. ACM 14, 4 (Oct. 1967), 687--697.
[62]
James R. Slagle, C. L. Chang, and Richard C. T. Lee. 1969. Completeness theorems for semantic resolution in consequence-finding. In Proceedings of the 1st International Joint Conference on Artificial Intelligence (IJCAI’69). William Kaufmann, 281--286.
[63]
Edith Spaan. 1993. Complexity of Modal Logics. Ph.D. Dissertation. University of Amsterdam.
[64]
The SPASS Team. 2010. Automation of Logic: SPASS. Retrieved from http://www.spass-prover.org/.
[65]
Dmitry Tsarkov and Ian Horrocks. 2006. FaCT++ description logic reasoner: System description. In Proceedings of the 3rd International Joint Conference on Automated Reasoning (IJCAR’06) (Lecture Notes in Computer Science), vol. 4130. Springer, 292--297.
[66]
Andrei Voronkov. 2013. Vampire. Retrieved from http://www.vprover.org/index.cgi.
[67]
Arild Waaler. 2001. Connections in nonclassical logics. In Handbook of Automated Reasoning, Alan Robinson and Andrei Voronkov (Eds.). Elsevier and MIT Press, 1487--1578.
[68]
Lincoln A. Wallen. 1990. Automated Deduction in Non-Classical Logics. MIT Press.
[69]
Larry Wos, George A. Robinson, and Daniel Carson. 1965. Efficiency and completeness of the set of support strategy in theorem proving. J. Assoc. Comput. Mach. 12 (1965), 536--541.

Cited By

View all

Index Terms

  1. Modal Resolution: Proofs, Layers, and Refinements

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Computational Logic
      ACM Transactions on Computational Logic  Volume 20, Issue 4
      October 2019
      323 pages
      ISSN:1529-3785
      EISSN:1557-945X
      DOI:10.1145/3347091
      • Editor:
      • Orna Kupferman
      Issue’s Table of Contents
      This work is licensed under a Creative Commons Attribution International 4.0 License.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 13 August 2019
      Accepted: 01 May 2019
      Revised: 01 March 2019
      Received: 01 December 2017
      Published in TOCL Volume 20, Issue 4

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Normal modal logics
      2. proof strategies
      3. resolution method

      Qualifiers

      • Research-article
      • Research
      • Refereed

      Funding Sources

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)104
      • Downloads (Last 6 weeks)22
      Reflects downloads up to 23 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Model Construction for Modal ClausesAutomated Reasoning10.1007/978-3-031-63501-4_1(3-23)Online publication date: 2-Jul-2024
      • (2023)Resolution Calculi for Non-normal Modal LogicsAutomated Reasoning with Analytic Tableaux and Related Methods10.1007/978-3-031-43513-3_18(322-341)Online publication date: 14-Sep-2023
      • (2023)Buy One Get 14 Free: Evaluating Local Reductions for Modal LogicAutomated Deduction – CADE 2910.1007/978-3-031-38499-8_22(382-400)Online publication date: 2-Sep-2023
      • (2022)Verifiable autonomy: From theory to applicationsAI Communications10.3233/AIC-22011535:4(421-431)Online publication date: 20-Sep-2022
      • (2022)Local is Best: Efficient Reductions to Modal Logic KJournal of Automated Reasoning10.1007/s10817-022-09630-666:4(639-666)Online publication date: 23-May-2022
      • (2022)Local Reductions for the Modal CubeAutomated Reasoning10.1007/978-3-031-10769-6_29(486-505)Online publication date: 1-Aug-2022
      • (2021)Proof Complexity of Modal ResolutionJournal of Automated Reasoning10.1007/s10817-021-09609-9Online publication date: 13-Oct-2021
      • (2021)Theorem Proving Using Clausal Resolution: From Past to PresentReachability Problems10.1007/978-3-030-89716-1_2(19-27)Online publication date: 22-Oct-2021
      • (2021)Efficient Local Reductions to Basic Modal LogicAutomated Deduction – CADE 2810.1007/978-3-030-79876-5_5(76-92)Online publication date: 5-Jul-2021

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format.

      HTML Format

      Login options

      Full Access

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media