Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3330204.3330266acmotherconferencesArticle/Chapter ViewAbstractPublication PagessbsiConference Proceedingsconference-collections
research-article

An Intelligent System to Enhance the Productivity and Sustainability in Soybean Crop Enterprises

Published: 20 May 2019 Publication History

Abstract

This work presents an approach for the automatic processing and classification of the vigor of soybean seeds. The validation was performed through experimental evaluation using real datasets. By automating the seed analysis, it is possible a faster and more precise control, increasing the market competitiveness between producers and benefiting consumers with higher quality products and more appropriate and specific prices, according to the quality of the seeds. In addition, consequently, improvements related to sustainability and productivity can be obtained in the processes of planting, multiplication and/or commercialization of soybeans with better quality.

References

[1]
R. A. Batista, D. D. S. Bagatini, and R. Frozza. 2018. Classificação Automática de Códigos NCM Utilizando o Algoritmo Naive Bayes. iSys - Revista Brasileira de Sistemas de Informação 11, 2 (2018), 4--29.
[2]
C. D. R. Bittencourt, M. Ladeira, S. F. Silva, A. L. S. Bittencourt, and D. L. Borges. 2008. Sistema de Classificação Automática de Carcaças Bovinas. In Simpósio Brasileiro de Sistemas de Informação. SBC, 258--267.
[3]
Márcio de Campos Martins de Freitas. 2011. A cultura da soja no Brasil: O crescimento da produção brasileira e o surgimento de uma nova fronteira agrícola. Enciclopédia Biosfera 7, 12 (2011).
[4]
R.D.V. Epiphanio, A.R. Formaggio, B.F.T. Rudorff, E.E. Maeda, and A.J.B. Luiz. 2010. Estimating soybean crop areas using spectral-temporal surfaces derived from MODIS images in Mato Grosso, Brazil. Pesquisa Agropecuária Brasileira 45, 1 (2010), 72--80.
[5]
A.W. Fitzgibbon and R.B. Fisher. 1995. A Buyer's Guide to Conic Fitting. British Machine Vision Conference 9, 51 (1995), 513--522.
[6]
J.B. França-Neto, F. C. Krzyzanowski, and N. P. da Costa. 1998. O teste de tetrazólio em sementes de soja. Embrapa-CNPSoja.
[7]
G.C. Guimarães, S.D.V.F. da Rosa, A.I. Freire, A.R. Chaves, and R.S.R. Pinto. 2011. Avaliação da qualidade fisiológica de sementes de café por meio de imagens digitalizadas. In Simpósio de Pesquisa dos Cafés do Brasil. Embrapa Café.
[8]
A.L. Hoffmaster, K Fujimura, M.B. McDonald, and M.A. Bennett. 2003. An automated system for vigor testing three-day-old soybean seedlings. Seed Science and Technology 31, 3 (2003), 701--713.
[9]
J.H. Kim and Y. Kim. 2018. Instagram user characteristics and the color of their photos: Colorfulness, color diversity, and color harmony. Information Processing & Management (2018), 1--12.
[10]
J. Marcos-Filho. 2015. Seed vigor testing: an overview of the past, present and future perspective. Scientia Agricola 72, 4 (2015), 363--374.
[11]
S.M. Mastelini, M.C. da Silva, A.P.A. da C. Barbon, andS. Barbon Jr. 2016. Marbling Grading Framework Applied on Meat Boutique Environment. In XII Brazilian Symposium on Information Systems. 542--549.
[12]
T. Ojala, M. Pietikäinen, and D. Harwood. 1996. A comparative study of texture measures with classification based on featured distributions. Pattern recognition 29, 1 (1996), 51--59.
[13]
D. F. Pereira, P. H. Bugatti, F. M. Lopes, A. L. S. M. Souza, and P. T. M. Saito. 2019. Contributing to agriculture by using soybean seed data from the tetrazolium test. Data Brief 23 (2019), 103652.
[14]
R. O. Stehling, M. A. Nascimento, and A. X. Falcão. 2002. A compact and efficient image retrieval approach based on border/interior pixel classification. In CIKM. 102--109.
[15]
M. A. Stricker and M. Orengo. 1995. Similarity of color images. In SPIE Storage and Retrieval for Image and Video Databases III, Vol. 2420. International Society for Optics and Photonics, 381--392.
[16]
M.J. Swain and D.H. Ballard. 1991. Color Indexing. IJCV 7, 1 (1991), 11--32.
[17]
R. D. Vieira, S. R. M. Bittencourt, and M. Panobianco. 2003. Seed vigor: an important component of seed quality in Brasil. Ista News Bulletin, Zürich 126 (2003), 21--22.
[18]
X. Yang, X. Shen, J. Long, and H. Chen. 2012. An Improved Median-based Otsu Image Thresholding Algorithm. AASRI Procedia 3 (2012), 468--473.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
SBSI '19: Proceedings of the XV Brazilian Symposium on Information Systems
May 2019
623 pages
ISBN:9781450372374
DOI:10.1145/3330204
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

In-Cooperation

  • SBC: Brazilian Computer Society

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 20 May 2019

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. agriculture
  2. image analysis
  3. intelligent systems
  4. machine learning

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

SBSI'19

Acceptance Rates

Overall Acceptance Rate 181 of 557 submissions, 32%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 97
    Total Downloads
  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)0
Reflects downloads up to 21 Nov 2024

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media