Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Dagstuhl Seminar on Big Stream Processing

Published: 27 February 2019 Publication History

Abstract

Stream processing can generate insights from big data in real time as it is being produced. This paper reports findings from a 2017 seminar on big stream processing, focusing on applications, systems, and languages.

References

[1]
Rocksdb. http://rocksdb.org/, 2018.
[2]
D. J. Abadi et al. Aurora: A new model and architecture for data stream management. VLDB J., 12(2), 2003.
[3]
T. Akidau et al. The dataflow model: A practical approach to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data processing. In VLDB, pages 1792--1803, 2015.
[4]
C. Amariei, P. Diac, and E. Onica. Optimized stage processing for anomaly detection on numerical data streams: Grand challenge. In DEBS, 2017.
[5]
A. Arasu, S. Babu, and J. Widom. The CQL continuous query language: Semantic foundations and query execution. VLDB J., 15(2):121--142, 2006.
[6]
P. Carbone, S. Ewen, G. Fora, S. Haridi, S. Richter, and K. Tzoumas. State management in Apache Flink: Consistent stateful distributed stream processing. In VLDB, 2017.
[7]
P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas. Apache Flink: Stream and batch processing in a single engine. IEEE Database Engineering Bulletin, 36(4):28--38, 2015.
[8]
S. Chandrasekaran et al. TelegraphCQ: Continuous dataflow processing for an uncertain world. In CIDR, pages 668--668, 2003.
[9]
S. Chintapalli et al. Benchmarking streaming computation engines: Storm, Flink and Spark Streaming. In IPDPSW, 2016.
[10]
J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. CACM, 51(1), 2008.
[11]
V. Gulisano, Z. Jerzak, R. Katerinenko, M. Strohbach, and H. Ziekow. The DEBS 2017 grand challenge. In DEBS, 2017.
[12]
M. Hirzel, G. Baudart, A. Bonifati, E. Della Valle, S. Sakr, and A. Vlachou. Stream processing languages in the big data era. SIGMOD Record, 2018.
[13]
M. Hirzel, S. Schneider, and B. Gedik. SPL: An extensible language for distributed stream processing. Transactions on Programming Languages and Systems (TOPLAS), 39(1):5:1--5:39, 2017.
[14]
G. Jacques-Silva et al. Consistent regions: Guaranteed tuple processing in ibm streams. In VLDB, 2016.
[15]
J. Kreps, N. Narkhede, J. Rao, et al. Kafka: A distributed messaging system for log processing. NetDB, 2011.
[16]
S. Kulkarni et al. Twitter Heron: Stream processing at scale. In SIGMOD, pages 239--250, 2015.
[17]
J. Li et al. Out-of-order processing: A new architecture for high-performance stream systems. In VLDB, 2008.
[18]
S. Sakr. Big Data 2.0 Processing Systems: A Survey. Springer, 2016.
[19]
A. Toshniwal et al. Storm @Twitter. In SIGMOD, 2014.
[20]
M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Discretized streams: Fault-tolerant streaming computation at scale. In SOSP, 2013.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM SIGMOD Record
ACM SIGMOD Record  Volume 47, Issue 3
September 2018
35 pages
ISSN:0163-5808
DOI:10.1145/3316416
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 February 2019
Published in SIGMOD Volume 47, Issue 3

Check for updates

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 112
    Total Downloads
  • Downloads (Last 12 months)8
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Nov 2024

Other Metrics

Citations

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media