Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3397125.3397136acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicctaConference Proceedingsconference-collections
research-article

Real-Time Long-Term Tracking with Adaptive Online Searching Model

Published: 29 May 2020 Publication History

Abstract

Kernelized correlation filter (KCF) based trackers have drawn great attention for their superiority in terms of accuracy and speed in visual tracking problem. However, these methods are not robust under scale changes, rotation and occlusion due to their having a fixed size filter. In this work, we take advantage of the KCF tracker to propose a novel algorithm for long-term visual object tracking which handle scale variation using Log-Polar Transformation and Phase Correlation. To detect exactly loss tracker moment when object partly for fully occlusion, this paper propose an effective technique combining PRS ratio and histogram distance. We also learn an online SVM classifier on consecutive and reliable samples to redetect objects in case of tracking failure due to heavy occlusion or out of view movement. Experimental results in several challenging tracking datasets from camera UAV show that our tracker achieves remarkable speed in real-time application at 40FPS while handling scale changes and occlusion better than many state-of-the art tracking algorithms.

References

[1]
D. S. a. B. J. R. a. D. B. A. a. L. Y. M. Bolme, "Visual object tracking using adaptive correlation filters," IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544--2550, 2010.
[2]
R. a. M. P. a. B. J. Henriques F and Caseiro, "High-speed tracking with kernelized correlation filters," IEEE transactions on pattern analysis and machine intelligence, vol. {37}, pp. 583--596, 2015.
[3]
Y. a. L. G. Li, "Learning a scale-and-rotation correlation filter for robust visual tracking," IEEE International Conference on Image Processing (ICIP), pp. 454--458, 2016.
[4]
Z. a. C. Z. a. W. C. a. M. X. a. P. D. a. T. D. Hong, "Multistore tracker (muster): A cognitive psychology inspired approach to object tracking," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 749--758, 2015.
[5]
Z. a. M. K. a. M. J. Kalal, "Forward-backward error: Automatic detection of tracking failures," 20th International Conference on Pattern Recognition, pp. 2756--2759, 2010.
[6]
G. a. Z. S. Wolberg, "Robust image registration using logpolar transform," Proceedings 2000 International Conference on Image Processing (Cat. No. 00CH37101), vol. 1, pp. 493--496, 2000.
[7]
A. a. B. L. Bordes, "The Huller: A Simple and Efficient Online SVM," Springer Berlin Heidelberg Machine Learning: ECML 2005, pp. 505--512, 2005.
[8]
P. Haffner, "Escaping the Convex Hull with Extrapolated Vector Machinesc," 2002.
[9]
Z. a. M. K. a. M. J. Kalal, "Tracking-learning-detection," IEEE transactions on pattern analysis and machine intelligence, vol. 34, pp. 1409--1422, 2012.
[10]
H. a. G. M. a. B. H. Grabner, "Real-time tracking via on-line boosting," Bmvc, vol. 1, p. {6}, 2006.
[11]
B. B. a. M.-H. Y. S. Belongie, "Robust Object Tracking with Online Multiple Instance Learning," IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2011.
[12]
P. F. {. a. R. B. {. a. D. {. a. D. {Ramanan}, "Object Detection with Discriminatively Trained Part-Based Models," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, pp. 1627--1645, 2010.
[13]
P. F. a. G. R. B. a. M. D. a. R. D. Felzenszwalb, "Object detection with discriminatively trained part-based models," IEEE transactions on pattern analysis and machine intelligence, vol. 32, pp. 1627--1645, 2010.
[14]
Y. a. Z. J. a. H. S. C. a. S. W. a. W. Z. a. L. H. Li, "Robust Estimation of Similarity Transformation for Visual Object Tracking," arXiv preprint arXiv:1712.05231, 2017.
[15]
J. N. a. P. S. a. K. K. Sarvaiya, "Image registration using log polar transform and phase correlation to recover higher scale," Journal of pattern recognition research, vol. 7, pp. 90--105, 2012.
[16]
S. a. W. G. Zokai, "Image registration using log-polar mappings for recovery of large-scale similarity and projective transformations," IEEE Transactions on Image Processing, vol. 14, pp. 1422--1434, 2005.
[17]
M. a. H. G. a. K. F. S. a. F. M. Danelljan, "Discriminative scale space tracking," IEEE transactions on pattern analysis and machine intelligence, vol. 39, pp. 1561--1575, 2017.
[18]
Y. a. Z. J. Li, "A scale adaptive kernel correlation filter tracker with feature integration," European conference on computer vision, pp. 254--265, 2014.
[19]
D. {. a. H. {. a. M. {Yang}, "Online Object Tracking With Sparse Prototypes," IEEE Transactions on Image Processing, vol. 22, pp. 314--325, 2013.
[20]
X. a. L. H. a. W. Y. a. B. E. a. B. L. Mei, "Minimum error bounded efficient ℓ 1 tracker with occlusion detection," CVPR, pp. 1257--1264, 2011.
[21]
S. a. N. W. a. H. B. a. H. J. H. Kwak, "Learning occlusion with likelihoods for visual tracking," 2011 International Conference on Computer Vision, pp. 1551--1558, 2011.
[22]
Y. a. Z. J. a. S. W. a. W. Z. a. L. H. a. H. S. C. Li, "Robust Estimation of Similarity Transformation for Visual Object Tracking with Correlation Filters," CoRR abs/1712.05231, 2017.
[23]
A. a. G. V. Moudgil, "Long-term Visual Object Tracking Benchmark," Asian Conference on Computer Vision, pp. 629--645, 2018.
[24]
V. a. T. S. a. W. C. a. S. J. Sa-ing, "Object Tracking for Laparoscopic Surgery Using theAdaptive Mean-Shift Kalman Algorithm," International Journal of Machine Learning and Computing, pp. 441--447, 2011.
[25]
Z. Y. a. W. W. Yao Yeboah, "Robust and Persistent Visual Tracking-by-Detection for Robotic Vision Systems," International Journal of Machine Learning and Computing, vol. 6, pp. 196--204, 2016.

Cited By

View all
  • (2023)An Anti-occlusion Object Tracking Algorithm Using KCF and ORB Feature Detector2023 5th International Conference on Robotics and Computer Vision (ICRCV)10.1109/ICRCV59470.2023.10329036(1-6)Online publication date: 15-Sep-2023
  • (2022)High-Performance FPGA Embedded System for Deep learning-based Thermal Object Tracking2022 International Conference on Advanced Mechatronic Systems (ICAMechS)10.1109/ICAMechS57222.2022.10003223(95-101)Online publication date: 17-Dec-2022

Index Terms

  1. Real-Time Long-Term Tracking with Adaptive Online Searching Model

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ICCTA '20: Proceedings of the 2020 6th International Conference on Computer and Technology Applications
    April 2020
    178 pages
    ISBN:9781450377492
    DOI:10.1145/3397125
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 29 May 2020

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. KCF tracker
    2. Log-polar transform
    3. Long-term tracking
    4. online classifier

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    ICCTA '20

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)2
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 14 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)An Anti-occlusion Object Tracking Algorithm Using KCF and ORB Feature Detector2023 5th International Conference on Robotics and Computer Vision (ICRCV)10.1109/ICRCV59470.2023.10329036(1-6)Online publication date: 15-Sep-2023
    • (2022)High-Performance FPGA Embedded System for Deep learning-based Thermal Object Tracking2022 International Conference on Advanced Mechatronic Systems (ICAMechS)10.1109/ICAMechS57222.2022.10003223(95-101)Online publication date: 17-Dec-2022

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media