Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article
Open access

On Shooting Stars: Comparing CAVE and HMD Immersive Virtual Reality Exergaming for Adults with Mixed Ability

Published: 30 September 2020 Publication History

Abstract

Inactivity and a lack of engagement with exercise is a pressing health problem in the United States and beyond. Immersive Virtual Reality (iVR) is a promising medium to motivate users through engaging virtual environments. Currently, modern iVR lacks a comparative analysis between research and consumer-grade systems for exercise and health. This article examines two such iVR mediums: the Cave Automated Virtual Environment (CAVE) and the head-mounted display (HMD). Specifically, we compare the room-scale Mechdyne CAVE and HTC Vive Pro HMD with a custom in-house exercise game that was designed such that user experiences were as consistent as possible between both systems. To ensure that our findings are generalizable for users of varying abilities, we recruited 40 participants with and without cognitive disabilities with regard to the fact that iVR environments and games can differ in their cognitive challenge between users. Our results show that across all abilities, the HMD excelled in in-game performance, biofeedback response, and player engagement. We conclude with considerations in utilizing iVR systems for exergaming with users across cognitive abilities.

References

[1]
Abeer Al-Nafjan, Manar Hosny, Yousef Al-Ohali, and Areej Al-Wabil. 2017. Review and classification of emotion recognition based on EEG brain-computer interface system research: A systematic review. Applied Sciences 7, 12 (2017), 1239.
[2]
Rosa María Baños, Cristina Botella, Mariano Alcañiz, Víctor Liaño, Belén Guerrero, and Beatriz Rey. 2004. Immersion and emotion: Their impact on the sense of presence. CyberPsychology 8 Behavior 7, 6 (2004), 734--741.
[3]
Jochen Baumeister, T. Barthel, Kurt-Reiner Geiss, and M. Weiss. 2008. Influence of phosphatidylserine on cognitive performance and cortical activity after induced stress. Nutritional Neuroscience 11, 3 (2008), 103--110.
[4]
M. Beccue and C. Wheelock. 2016. Research Report: Virtual Reality for Consumer Markets. Technical Report. Tractica Research. https://www.tractica.com/research/virtual-reality-for-consumer-markets/.
[5]
Sheffy Bhayee, Patricia Tomaszewski, Daniel H. Lee, Graeme Moffat, Lou Pino, Sylvain Moreno, and Norman A. S. Farb. 2016. Attentional and affective consequences of technology supported mindfulness training: A randomised, active control, efficacy trial. BMC Psychology 4, 1 (2016), 60.
[6]
Wolfram Boucsein. 2012. Electrodermal Activity. Springer Science 8 Business Media.
[7]
Doug A. Bowman, Ameya Datey, Umer Farooq, Y. Ryu, and Omar Vasnaik. 2001. Empirical Comparisons of Virtual Environment Displays. Technical Report. Department of Computer Science, Virginia Polytechnic Institute 8 State University.
[8]
Johnathan Bown, Elisa White, and Akshya Boopalan. 2017. Looking for the ultimate display: A brief history of virtual reality. In Boundaries of Self and Reality Online. Elsevier, 239--259.
[9]
Francesco Brigo. 2011. Intermittent rhythmic delta activity patterns. Epilepsy 8 Behavior 20, 2 (2011), 254--256.
[10]
Mónica S. Cameirao, I. Badia S. Bermúdez, Esther Duarte Oller, and Paul F. Verschure. 2009. The rehabilitation gaming system: A review. Studies in Health Techology and Informatics 145, 6 (2009), 1--20.
[11]
Mónica S. Cameirão, S. Bermúdez, and P. F. M. J. Verschure. 2008. Virtual reality based upper extremity rehabilitation following stroke: A review. Journal of CyberTherapy 8 Rehabilitation 1, 1 (2008), 63--74.
[12]
Luca Chittaro, Riccardo Sioni, Cristiano Crescentini, and Franco Fabbro. 2017. Mortality salience in virtual reality experiences and its effects on users’ attitudes towards risk. International Journal of Human-Computer Studies 101 (2017), 10--22.
[13]
Ronald A. Cohen. 2011. Yerkes-Dodson law. In Encyclopedia of Clinical Neuropsychology, J. Kreutzer, J. DeLuca, and B. Caplan (Eds.). Springer, 2737--2738.
[14]
Davide Corbetta, Federico Imeri, and Roberto Gatti. 2015. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: A systematic review. Journal of Physiotherapy 61, 3 (2015), 117--124.
[15]
Maxime Cordeil, Tim Dwyer, Karsten Klein, Bireswar Laha, Kim Marriott, and Bruce H. Thomas. 2017. Immersive collaborative analysis of network connectivity: Cave-style or head-mounted display? IEEE Transactions on Visualization and Computer Graphics 23, 1 (2017), 441--450.
[16]
HTC Corporation. 2019. HTC corporation: Vive Pro HMD. Retrieved September 1, 2020 from https://www.vive.com/us/product/vive-pro/.
[17]
Patrick J. Costello. 1997. Health and Safety Issues Associated with Virtual Reality: A Review of Current Literature. Advisory Group on Computer Graphics.
[18]
Heather Creagh. 2003. Cave automatic virtual environment. In Proceedings of the 2003 Electrical Insulation Conference and Electrical Manufacturing 8 Coil Winding Technology Conference. IEEE, Los Alamitos, CA, 499--504.
[19]
Hugo D. Critchley. 2002. Electrodermal responses: What happens in the brain. Neuroscientist 8, 2 (2002), 132--142.
[20]
J. H. Crosbie, S. Lennon, J. R. Basford, and S. M. McDonough. 2007. Virtual reality in stroke rehabilitation: Still more virtual than real. Disability and Rehabilitation 29, 14 (2007), 1139--1146.
[21]
Eduardo Cuervo, Krishna Chintalapudi, and Manikanta Kotaru. 2018. Creating the perfect illusion: What will it take to create life-like virtual reality headsets? In Proceedings of the 19th International Workshop on Mobile Computing Systems and Applications. ACM, New York, NY, 7--12.
[22]
Günther Deuschl and Andrew Eisen. 1999. Recommendations for the Practice of Clinical Neurophysiology: Guidelines of the International Federation of Clinical Neurophysiology. Electroencephalography and Clinical Neurophysiology (Suppl. 52). Elsevier, Amsterdam, the Netherlands.
[23]
Julia Diemer, Georg W. Alpers, Henrik M. Peperkorn, Youssef Shiban, and Andreas Mühlberger. 2015. The impact of perception and presence on emotional reactions: A review of research in virtual reality. Frontiers in Psychology 6 6 (2015), 26.
[24]
Jay Earles, Raymond A. Folen, and Larry C. James. 2001. Biofeedback using telemedicine: Clinical applications and case illustrations. Behavioral Medicine 27, 2 (2001), 77--82.
[25]
Aviv Elor, Sri Kurniawan, and Mircea Teodorescu. 2018. Towards an immersive virtual reality game for smarter post-stroke rehabilitation. In Proceedings of the 2018 IEEE International Conference on Smart Computing (SMARTCOMP’18). IEEE, Los Alamitos, CA, 219--225.
[26]
Aviv Elor, Steven Lessard, Mircea Teodorescu, and Sri Kurniawan. 2019. Project Butterfly: Synergizing immersive virtual reality with actuated soft exosuit for upper-extremity rehabilitation. In Proceedings of the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR’19). IEEE, Los Alamitos, CA, 1448--1456.
[27]
Aviv Elor, Mircea Teodorescu, and Sri Kurniawan. 2018. Project Star Catcher: A novel immersive virtual reality experience for upper limb rehabilitation. ACM Transactions on Accessible Computing 11, 4 (2018), 20.
[28]
Samantha Finkelstein, Andrea Nickel, Tiffany Barnes, and Evan A. Suma. 2010. Astrojumper: Motivating children with autism to exercise using a VR game. In CHI’10 Extended Abstracts on Human Factors in Computing Systems (CHI EA’10). ACM, New York, NY, 4189--4194.
[29]
Centers for Disease Control and Prevention. 2019. Behavioral Risk Factor Surveillance System: 2017 Data. Retrieved September 1, 2020 from https://www.cdc.gov/brfss/annual_data/annual_2017.html.
[30]
Joshua J. Foster, David W. Sutterer, John T. Serences, Edward K. Vogel, and Edward Awh. 2017. Alpha-band oscillations enable spatially and temporally resolved tracking of covert spatial attention. Psychological Science 28, 7 (2017), 929--941.
[31]
Jean Dickinson Gibbons and Subhabrata Chakraborti. 2011. Nonparametric Statistical Inference. Springer.
[32]
Shawn N. Gieser, Eric Becker, and Fillia Makedon. 2013. Using CAVE in physical rehabilitation exercises for rheumatoid arthritis. In Proceedings of the 6th International Conference on Pervasive Technologies Related to Assistive Environments. ACM, New York, NY, 30.
[33]
Atefeh Goshvarpour, Ataollah Abbasi, and Ateke Goshvarpour. 2017. An accurate emotion recognition system using ECG and GSR signals and matching pursuit method. Biomedical Journal 40, 6 (2017), 355--368.
[34]
John D. Green and Arnaldo A. Arduini. 1954. Hippocampal electrical activity in arousal. Journal of Neurophysiology 17, 6 (1954), 533--557.
[35]
Helena Grillon, Françoise Riquier, Bruno Herbelin, and Daniel Thalmann. 2006. Virtual reality as a therapeutic tool in the confines of social anxiety disorder treatment. International Journal on Disability and Human Development 5, 3 (2006), 243--250.
[36]
Diane Gromala, Xin Tong, Amber Choo, Mehdi Karamnejad, and Chris D. Shaw. 2015. The virtual meditative walk: Virtual reality therapy for chronic pain management. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. ACM, New York, NY, 521--524.
[37]
Lindsay F. Haas. 2003. Hans Berger (1873--1941), Richard Caton (1842--1926), and electroencephalography. Journal of Neurology, Neurosurgery 8 Psychiatry 74, 1 (2003), 9.
[38]
Michael E. Hasselmo and Howard Eichenbaum. 2005. Hippocampal mechanisms for the context-dependent retrieval of episodes. Neural Networks 18, 9 (2005), 1172--1190.
[39]
Toyohiko Hatada, Haruo Sakata, and Hideo Kusaka. 1980. Psychophysical analysis of the “sensation of reality” induced by a visual wide-field display. SMPTE Journal 89, 8 (1980), 560--569.
[40]
Desmond J. Higham and Nicholas J. Higham. 2016. MATLAB Guide. Vol. 150. SIAM.
[41]
J. Allan Hobson and Edward F. Pace-Schott. 2002. The cognitive neuroscience of sleep: Neuronal systems, consciousness and learning. Nature Reviews Neuroscience 3, 9 (2002), 679.
[42]
Hunter G. Hoffman, Gloria T. Chambers, Walter J. Meyer, Lisa L. Arceneaux, William J. Russell, Eric J. Seibel, Todd L. Richards, Sam R. Sharar, and David R. Patterson. 2011. Virtual reality as an adjunctive non-pharmacologic analgesic for acute burn pain during medical procedures. Annals of Behavioral Medicine 41, 2 (2011), 183--191.
[43]
Hunter G. Hoffman, Walter J. Meyer III, Maribel Ramirez, Linda Roberts, Eric J. Seibel, Barbara Atzori, Sam R. Sharar, and David R. Patterson. 2014. Feasibility of articulated arm mounted oculus rift virtual reality goggles for adjunctive pain control during occupational therapy in pediatric burn patients. Cyberpsychology, Behavior, and Social Networking 17, 6 (2014), 397--401.
[44]
Myles Hollander, Douglas A. Wolfe, and Eric Chicken. 2013. Nonparametric Statistical Methods. Vol. 751. John Wiley 8 Sons.
[45]
L. M. Howden and J. A. Meyer. 2011. Age and sex composition: 2010. U.S. Census Bureau. Retrieved September 1, 2020 from https://www.census.gov/prod/cen2010/briefs/c2010br-03.pdf.
[46]
John R. Hughes. 2008. Gamma, fast, and ultrafast waves of the brain: Their relationships with epilepsy and behavior. Epilepsy 8 Behavior 13, 1 (2008), 25--31.
[47]
Conrad Iber and Conrad Iber. 2007. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. Vol. 1. American Academy of Sleep Medicine, Westchester, IL.
[48]
Apple Inc. 2019. Augmented Reality—ARKit 3. Retrieved September 1, 2020 from https://developer.apple.com/augmented-reality/arkit/.
[49]
InteraXon. 2019. Featured Research with Muse. Retrieved September 1, 2020 from https://choosemuse.com/muse-research/, developer.choosemuse.com/tools/available-data.
[50]
Jerome Iruthayarajah, Amanda McIntyre, Andreea Cotoi, Steven Macaluso, and Robert Teasell. 2017. The use of virtual reality for balance among individuals with chronic stroke: A systematic review and meta-analysis. Topics in Stroke Rehabilitation 24, 1 (2017), 68--79.
[51]
Charlene Jennett, Anna L. Cox, Paul Cairns, Samira Dhoparee, Andrew Epps, Tim Tijs, and Alison Walton. 2008. Measuring and defining the experience of immersion in games. International Journal of Human-Computer Studies 66, 9 (2008), 641--661.
[52]
Fan Jiang, Xubo Yang, and Lele Feng. 2016. Real-time full-body motion reconstruction and recognition for off-the-shelf VR devices. In Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry—Volume 1. ACM, New York, NY, 309--318.
[53]
M. Carmen Juan and David Pérez. 2009. Comparison of the levels of presence and anxiety in an acrophobic environment viewed via HMD or CAVE. Presence: Teleoperators and Virtual Environments 18, 3 (2009), 232--248.
[54]
Kwanguk Kim, M. Zachary Rosenthal, David Zielinski, and Rachel Brady. 2012. Comparison of desktop, head mounted display, and six wall fully immersive systems using a stressful task. In Proceedings of the 2012 IEEE Virtual Reality Workshops (VRW’12). IEEE, Los Alamitos, CA, 143--144.
[55]
Natasha Kovacevic, Petra Ritter, William Tays, Sylvain Moreno, and Anthony Randal McIntosh. 2015. ‘My virtual dream’: Collective neurofeedback in an immersive art environment. PLoS ONE 10, 7 (2015), e0130129.
[56]
Olave E. Krigolson, Chad C. Williams, Angela Norton, Cameron D. Hassall, and Francisco L. Colino. 2017. Choosing MUSE: Validation of a low-cost, portable EEG system for ERP research. Frontiers in Neuroscience 11 (2017), 109.
[57]
Belinda Lange, Chien-Yen Chang, Evan Suma, Bradley Newman, Albert Skip Rizzo, and Mark Bolas. 2011. Development and evaluation of low cost game-based balance rehabilitation tool using the Microsoft Kinect sensor. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, Los Alamitos, CA, 1831--1834.
[58]
Joseph J. LaViola Jr. 2000. A discussion of cybersickness in virtual environments. ACM SIGCHI Bulletin 32, 1 (2000), 47--56.
[59]
Mingyang Liu, Di Fan, Xiaohan Zhang, and Xiaopeng Gong. 2016. Human emotion recognition based on galvanic skin response signal feature selection and SVM. In Proceedings of the 2016 International Conference on Smart City and Systems Engineering (ICSCSE’16). IEEE, Los Alamitos, CA, 157--160.
[60]
Rodolfo R. Llinás. 2014. Intrinsic electrical properties of mammalian neurons and CNS function: A historical perspective. Frontiers in Cellular Neuroscience 8 (2014), 320.
[61]
Keith R. Lohse, Courtney G. E. Hilderman, Katharine L. Cheung, Sandy Tatla, and H. F. Machiel Van der Loos. 2014. Virtual reality therapy for adults post-stroke: A systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLoS ONE 9, 3 (2014), e93318.
[62]
J. F. Lubar, M. O. Swartwood, J. N. Swartwood, and D. L. Timmermann. 1995. Quantitative EEG and auditory event-related potentials in the evaluation of attention-deficit/hyperactivity disorder: Effects of methylphenidate and implications for neurofeedback training. Journal of Psychoeducational Assessment 34 (1995), 143--160.
[63]
Joel F. Lubar. 1991. Discourse on the development of EEG diagnostics and biofeedback for attention-deficit/hyperactivity disorders. Biofeedback and Self-Regulation 16, 3 (1991), 201--225.
[64]
Hengameh Marzbani, Hamid Reza Marateb, and Marjan Mansourian. 2016. Neurofeedback: A comprehensive review on system design, methodology and clinical applications. Basic and Clinical Neuroscience 7, 2 (2016), 143.
[65]
Katharina Meyerbröker, Nexhmedin Morina, Gerard Kerkhof, and Paul M. G. Emmelkamp. 2011. Virtual reality exposure treatment of agoraphobia: A comparison of computer automatic virtual environment and head-mounted display. Annual Review of Cybertherapy and Telemedicine 9, 1 (2011), 41--45.
[66]
Haylie L. Miller and Nicoleta L. Bugnariu. 2016. Level of immersion in virtual environments impacts the ability to assess and teach social skills in autism spectrum disorder. Cyberpsychology, Behavior, and Social Networking 19, 4 (2016), 246--256.
[67]
Nexhmedin Morina, Hiske Ijntema, Katharina Meyerbröker, and Paul M. G. Emmelkamp. 2015. Can virtual reality exposure therapy gains be generalized to real-life? A meta-analysis of studies applying behavioral assessments. Behaviour Research and Therapy 74 (2015), 18--24.
[68]
Hossein Mousavi Hondori and Maryam Khademi. 2014. A review on technical and clinical impact of Microsoft Kinect on physical therapy and rehabilitation. Journal of Medical Engineering 2014 (2014), 846514.
[69]
Maria V. Nararro-Haro, Hunter G. Hoffman, Azucena Garcia-Palacios, Mariana Sampaio, Wadee Alhalabi, Karyn Hall, and Marsha Linehan. 2016. The use of virtual reality to facilitate mindfulness skills training in dialectical behavioral therapy for borderline personality disorder: A case study. Frontiers in Psychology 7 (2016), 1573.
[70]
NaturalPoint Inc. 2019. DBA Optitrack Motion Capture System. Available at https://optitrack.com/.
[71]
Neulog. 2019. GSR Logger Sensor NUL-217. Retrieved September 1, 2020 from https://neulog.com/gsr/.
[72]
John O’Keefe and Neil Burgess. 1999. Theta activity, virtual navigation and the human hippocampus. Trends in Cognitive Sciences 3, 11 (1999), 403--406.
[73]
Sean O’Nuallain. 2009. Zero power and selflessness: What meditation and conscious perception have in common. Journal of Cognitive Sciences 4, 2 (2009), 46--64.
[74]
Orion. 2019. Motion Capture, VR, Games—Project Orion. Retrieved September 1, 2020 from https://www.ikinema.com/docs/s317i365.html.
[75]
Patrick Z. Pearce. 2008. Exercise is medicine. Current Sports Medicine Reports 7, 3 (2008), 171--175.
[76]
Adam Philpot, Maxine Glancy, Peter J. Passmore, Andrew Wood, and Bob Fields. 2017. User experience of panoramic video in CAVE-like and head mounted display viewing conditions. In Proceedings of the 2017 ACM International Conference on Interactive Experiences for TV and Online Video. 65--75.
[77]
Polar. 2019. Polar OH1—Optical Heart Rate Sensor. Retrieved September 1, 2020 from https://www.polar.com/us-en/products/accessories/oh1-optical-heart-rate-sensor.
[78]
Rosemarie J. E. Rajae-Joordens. 2008. Measuring experiences in gaming and TV applications. In Probing Experience. Springer, 77--90.
[79]
Rafael Ramirez and Zacharias Vamvakousis. 2012. Detecting emotion from EEG signals using the Emotive Epoc device. In Proceedings of the International Conference on Brain Informatics. 175--184.
[80]
Debbie Rand, Rachel Kizony, and Patrice Tamar L. Weiss. 2008. The Sony PlayStation II Eyetoy: Low-cost virtual reality for use in rehabilitation. Journal of Neurologic Physical Therapy 32, 4 (2008), 155--163.
[81]
Madhavi Rangaswamy, Bernice Porjesz, David B. Chorlian, Kongming Wang, Kevin A. Jones, Lance O. Bauer, John Rohrbaugh, et al. 2002. Beta power in the EEG of alcoholics. Biological Psychiatry 52, 8 (2002), 831--842.
[82]
Lisa Rebenitsch and Charles Owen. 2016. Review on cybersickness in applications and visual displays. Virtual Reality 20, 2 (2016), 101--125.
[83]
G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, R. Baets, P. R. Romeo, P. Regreny, et al. 2007. III-V/Si photonics by die to wafer bonding. Materials Today 10, 7-8 (2007), 36--43.
[84]
Bernard Rosner, Robert J. Glynn, and Mei-Ling T. Lee. 2006. The Wilcoxon signed rank test for paired comparisons of clustered data. Biometrics 62, 1 (2006), 185--192.
[85]
Barbara Olasov Rothbaum, Matthew Price, Tanja Jovanovic, Seth D. Norrholm, Maryrose Gerardi, Boadie Dunlop, Michael Davis, et al. 2014. A randomized, double-blind evaluation of D-cycloserine or alprazolam combined with virtual reality exposure therapy for posttraumatic stress disorder in Iraq and Afghanistan War veterans. American Journal of Psychiatry 171, 6 (2014), 640--648.
[86]
Mar Rus-Calafell, José Gutiérrez-Maldonado, and Joan Ribas-Sabaté. 2014. A virtual reality-integrated program for improving social skills in patients with schizophrenia: A pilot study. Journal of Behavior Therapy and Experimental Psychiatry 45, 1 (2014), 81--89.
[87]
Valorie N. Salimpoor, Mitchel Benovoy, Gregory Longo, Jeremy R. Cooperstock, and Robert J. Zatorre. 2009. The rewarding aspects of music listening are related to degree of emotional arousal. PLoS ONE 4, 10 (2009), e7487.
[88]
Harold Sandler. 2012. Inactivity: Physiological Effects. Elsevier.
[89]
Gustavo Saposnik, Mindy Levin, and the Stroke Outcome Research Canada (SORCan) Working Group. 2011. Virtual reality in stroke rehabilitation. Stroke 42, 5 (2011), 1380--1386.
[90]
Hope Services. 2020. About Hope Services. Retrieved September 1, 2020 from https://www.hopeservices.org/about-hope-services/.
[91]
Youssef Shiban, Iris Schelhorn, Paul Pauli, and Andreas Mühlberger. 2015. Effect of combined multiple contexts and multiple stimuli exposure in spider phobia: A randomized clinical trial in virtual reality. Behaviour Research and Therapy 71 (2015), 45--53.
[92]
Wolf Singer and Charles M. Gray. 1995. Visual feature integration and the temporal correlation hypothesis. Annual Review of Neuroscience 18, 1 (1995), 555--586.
[93]
Rodrigo Soares, Elton Siqueira, Marco Miura, Tiago Silva, and Carla Castanho. 2016. Biofeedback sensors in game telemetry research. In Proceedings of SBGames 2016. 81--89.
[94]
Penny J. Standen and David J. Brown. 2005. Virtual reality in the rehabilitation of people with intellectual disabilities. Cyberpsychology 8 Behavior 8, 3 (2005), 272--282.
[95]
Ivan E. Sutherland. 1965. The ultimate display. In Multimedia: From Wagner to Virtual Reality. Norton, New York, NY, 506--508.
[96]
Ivan E. Sutherland. 1968. A head-mounted three dimensional display. In Proceedings of the December 9-11, 1968, Fall Joint Computer Conference, Part I. ACM, New York, NY, 757--764.
[97]
C. H. Vanderwolf. 2000. Are neocortical gamma waves related to consciousness? Brain Research 855, 2 (2000), 217--224.
[98]
Peter M. B. Walker. 1999. Chambers Dictionary of Science and Technology. Kingfisher.
[99]
I. Q. Whishaw and C. Hippocampal Vanderwolf. 1973. Hippocampal EEG and behavior: Change in amplitude and frequency of RSA (theta rhythm) associated with spontaneous and learned movement patterns in rats and cats. Behavioral Biology 8, 4 (1973), 461--484.
[100]
Emma M. Whitham, Trent Lewis, Kenneth J. Pope, Sean P. Fitzgibbon, C. Richard Clark, Stephen Loveless, Dylan DeLosAngeles, Angus K. Wallace, Marita Broberg, and John O. Willoughby. 2008. Thinking activates EMG in scalp electrical recordings. Clinical Neurophysiology 119, 5 (2008), 1166--1175.
[101]
Shlomit Yuval-Greenberg, Orr Tomer, Alon S. Keren, Israel Nelken, and Leon Y. Deouell. 2008. Transient induced gamma-band response in EEG as a manifestation of miniature saccades. Neuron 58, 3 (2008), 429--441.

Cited By

View all
  • (2024)Immersion in Virtual Reality: CAVE Automatic Virtual Environments vs. Head-Mounted DisplaysProceedings of the 32nd International Conference on Information Systems Development10.62036/ISD.2024.62Online publication date: 2024
  • (2024)Robotic systems for upper-limb rehabilitation in multiple sclerosis: a SWOT analysis and the synergies with virtual and augmented environmentsFrontiers in Robotics and AI10.3389/frobt.2024.133514711Online publication date: 27-Feb-2024
  • (2024)Cave Automatic Virtual Environment Technology to Enhance Social Participation of Autistic People: A Classification and Literature ReviewSSRN Electronic Journal10.2139/ssrn.4763472Online publication date: 2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Computing for Healthcare
ACM Transactions on Computing for Healthcare  Volume 1, Issue 4
Special Issue on Wearable Technologies for Smart Health: Part 1
October 2020
184 pages
EISSN:2637-8051
DOI:10.1145/3427421
Issue’s Table of Contents
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 30 September 2020
Online AM: 07 May 2020
Accepted: 01 April 2020
Revised: 01 March 2020
Received: 01 August 2019
Published in HEALTH Volume 1, Issue 4

Check for updates

Author Tags

  1. Cave Automated Virtual Environment (CAVE)
  2. Exergaming
  3. HTC Vive
  4. Project Star Catcher (PSC)
  5. biofeedback
  6. disability
  7. emotion
  8. games for health
  9. gamification
  10. head-mounted display (HMD)
  11. immersion
  12. immersive Virtual Reality (iVR)
  13. serious games

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • National Science Foundation

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)613
  • Downloads (Last 6 weeks)60
Reflects downloads up to 16 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Immersion in Virtual Reality: CAVE Automatic Virtual Environments vs. Head-Mounted DisplaysProceedings of the 32nd International Conference on Information Systems Development10.62036/ISD.2024.62Online publication date: 2024
  • (2024)Robotic systems for upper-limb rehabilitation in multiple sclerosis: a SWOT analysis and the synergies with virtual and augmented environmentsFrontiers in Robotics and AI10.3389/frobt.2024.133514711Online publication date: 27-Feb-2024
  • (2024)Cave Automatic Virtual Environment Technology to Enhance Social Participation of Autistic People: A Classification and Literature ReviewSSRN Electronic Journal10.2139/ssrn.4763472Online publication date: 2024
  • (2024)FitFest: Designing a Narrative-driven Exergame to Engage Active Seniors in Physical ActivityProceedings of the 27th International Academic Mindtrek Conference10.1145/3681716.3689453(301-305)Online publication date: 8-Oct-2024
  • (2024)Born to Run, Programmed to Play: Mapping the Extended Reality Exergames LandscapeProceedings of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613904.3642124(1-28)Online publication date: 11-May-2024
  • (2024)WebXR, CAVEs, and the Balance of XR Platform Agnosticity Versus Performance in Immersive Scientific Visualization2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)10.1109/VRW62533.2024.00101(525-528)Online publication date: 16-Mar-2024
  • (2024)Learning Middle-Latitude Cyclone Formation up in the Air: Student Learning Experience, Outcomes, and Perceptions in a CAVE-Enabled Meteorology ClassIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.337207230:5(2807-2817)Online publication date: 5-Mar-2024
  • (2024)Olfaction-Enhanced Virtual Reality Game for Visual Acuity in Adults with Amblyopia2024 IEEE 12th International Conference on Serious Games and Applications for Health (SeGAH)10.1109/SeGAH61285.2024.10639558(1-6)Online publication date: 7-Aug-2024
  • (2024)Sensor fusion-based virtual reality for enhanced physical trainingRobotic Intelligence and Automation10.1108/RIA-08-2023-010344:1(48-67)Online publication date: 6-Mar-2024
  • (2024)Physiological Data for User Experience and Quality of Experience: A Systematic Review (2018–2022)International Journal of Human–Computer Interaction10.1080/10447318.2024.2311972(1-30)Online publication date: 13-Feb-2024
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media