Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3393691.3394203acmconferencesArticle/Chapter ViewAbstractPublication PagesmetricsConference Proceedingsconference-collections
abstract

On the Analysis of a Multipartite Entanglement Distribution Switch

Published: 08 June 2020 Publication History

Abstract

We study a quantum switch that distributes maximally entangled multipartite states to sets of users. The entanglement switching process requires two steps: first, each user attempts to generate bipartite entanglement between itself and the switch; and second, the switch performs local operations and a measurement to create multipartite entanglement for a set of users. In this work, we study a simple variant of this system, wherein the switch has infinite memory and the links that connect the users to the switch are identical. Further, we assume that all quantum states, if generated successfully, have perfect fidelity and that decoherence is negligible. This problem formulation is of interest to several distributed quantum applications, while the technical aspects of this work result in new contributions within queueing theory. Via extensive use of Lyapunov functions, we derive necessary and sufficient conditions for the stability of the system and closed-form expressions for the switch capacity and the expected number of qubits in memory.

Supplementary Material

MP4 File (3393691.3394203.mp4)
"On the Analysis of a Multipartite Entanglement Distribution Switch". Philippe Nain, Gayane Vardoyan, Saikat Guha, and Don Towsley.

References

[1]
C. H. Bennett, G. Brassard, and N. D. Mermin. Quantum cryptography without bell's theorem. Physical review letters, 68(5):557, 1992.
[2]
K. Chen and H.-K. Lo. Multi-partite quantum cryptographic protocols with noisy GHZ states. arXiv preprint quant-ph/0404133, 2004.
[3]
A. K. Ekert. Quantum Cryptography Based on Bell's Theorem. Physical review letters, 67(6):661, 1991.
[4]
Z. Eldredge, M. Foss-Feig, J. A. Gross, S. L. Rolston, and A. V. Gorshkov. Optimal and secure measurement protocols for quantum sensor networks. Physical Review A, 97(4):042337, 2018.
[5]
F. Ewert and P. van Loock. 3/4-Efficient Bell Measurement with Passive Linear Optics and Unentangled Ancillae. Physical review letters, 2014.
[6]
S. Guha, H. Krovi, C. A. Fuchs, Z. Dutton, J. A. Slater, C. Simon, and W. Tittel. Rate-loss analysis of an efficient quantum repeater architecture. Physical Review A, 92(2):022357, 2015.
[7]
J.-C. Hao, C.-F. Li, and G.-C. Guo. Controlled dense coding using the Greenberger-Horne-Zeilinger state. Physical Review A, 63(5):054301, 2001.
[8]
J. M. Harrison. Assembly-like queues. Journal of Applied Probability, 10(2):354--367, 1973.
[9]
M. Hillery, V. Buvz ek, and A. Berthiaume. Quantum secret sharing. Physical Review A, 59(3):1829, 1999.
[10]
S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang. Optimal architectures for long distance quantum communication. Scientific reports, 6:20463, 2016.
[11]
P. Nain, G. Vardoyan, S. Guha, and D. Towsley. On the Analysis of a Multipartite Entanglement Distribution Switch. Proceedings of the ACM on Measurement and Analysis of Computing Systems (POMACS), 4(2), Article 23, June, 2020.
[12]
M. Pant, H. Krovi, D. Englund, and S. Guha. Rate-distance tradeoff and resource costs for all-optical quantum repeaters. Physical Review A, 95(1):012304, 2017.
[13]
S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi. Fundamental limits of repeaterless quantum communications. Nature communications, 8(1):1--15, 2017.
[14]
P. Som, W. E. Wilhelm, and R. L. Disney. Kitting process in a stochastic assembly system. Queueing Systems, 17(3--4):471--490, 1994.
[15]
W. Szpankowski. Stability conditions for multidimensional queueing systems with computer applications. Operations Research, 36(6):944--957, 1988.
[16]
M. Takeoka, S. Guha, and M. M. Wilde. Fundamental rate-loss tradeoff for optical quantum key distribution. Nature communications, 5(1):1--7, 2014.
[17]
G. Vardoyan, S. Guha, P. Nain, and D. Towsley. On the Stochastic Analysis of a Quantum Entanglement Switch. arXiv preprint arXiv:1903.04420, 2019.

Cited By

View all
  • (2024)A Linear Algebraic Framework for Dynamic Scheduling Over Memory-Equipped Quantum NetworksIEEE Transactions on Quantum Engineering10.1109/TQE.2023.33411515(1-18)Online publication date: 2024
  • (2024)On Optimum Entanglement Purification Scheduling in Quantum NetworksIEEE Journal on Selected Areas in Communications10.1109/JSAC.2024.338008042:7(1779-1792)Online publication date: Jul-2024
  • (2023)Optimal Entanglement Distillation Policies for Quantum Switches2023 IEEE International Conference on Quantum Computing and Engineering (QCE)10.1109/QCE57702.2023.00135(1198-1204)Online publication date: 17-Sep-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGMETRICS '20: Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems
June 2020
124 pages
ISBN:9781450379854
DOI:10.1145/3393691
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 08 June 2020

Check for updates

Author Tags

  1. entanglement distribution
  2. markov chain
  3. quantum switch

Qualifiers

  • Abstract

Funding Sources

  • National Science Foundation

Conference

SIGMETRICS '20
Sponsor:

Acceptance Rates

Overall Acceptance Rate 459 of 2,691 submissions, 17%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 21 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)A Linear Algebraic Framework for Dynamic Scheduling Over Memory-Equipped Quantum NetworksIEEE Transactions on Quantum Engineering10.1109/TQE.2023.33411515(1-18)Online publication date: 2024
  • (2024)On Optimum Entanglement Purification Scheduling in Quantum NetworksIEEE Journal on Selected Areas in Communications10.1109/JSAC.2024.338008042:7(1779-1792)Online publication date: Jul-2024
  • (2023)Optimal Entanglement Distillation Policies for Quantum Switches2023 IEEE International Conference on Quantum Computing and Engineering (QCE)10.1109/QCE57702.2023.00135(1198-1204)Online publication date: 17-Sep-2023
  • (2023)On the Capacity Region of a Quantum Switch with Entanglement PurificationIEEE INFOCOM 2023 - IEEE Conference on Computer Communications10.1109/INFOCOM53939.2023.10229003(1-10)Online publication date: 17-May-2023
  • (2022)The Capacity Region of Entanglement Switching: Stability and Zero Latency2022 IEEE International Conference on Quantum Computing and Engineering (QCE)10.1109/QCE53715.2022.00060(389-399)Online publication date: Sep-2022
  • (2022)Analysis of a tripartite entanglement distribution switchQueueing Systems10.1007/s11134-021-09731-w101:3-4(291-328)Online publication date: 20-Jan-2022
  • (2020)On the exact analysis of an idealized quantum switchPerformance Evaluation10.1016/j.peva.2020.102141(102141)Online publication date: Oct-2020

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media